feat: Implement candlestick pattern scanner with TA-Lib patterns
This commit is contained in:
parent
19c3fd4af7
commit
11da880979
@ -12,7 +12,7 @@ def technical_scanner_page():
|
|||||||
with scanner_tab:
|
with scanner_tab:
|
||||||
scanner_type = st.selectbox(
|
scanner_type = st.selectbox(
|
||||||
"Select Scanner",
|
"Select Scanner",
|
||||||
["SunnyBands", "ATR-EMA", "ATR-EMA v2", "Heikin-Ashi"],
|
["SunnyBands", "ATR-EMA", "ATR-EMA v2", "Heikin-Ashi", "Candlestick"],
|
||||||
key="tech_scanner_type"
|
key="tech_scanner_type"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
129
src/screener/t_candlestick.py
Normal file
129
src/screener/t_candlestick.py
Normal file
@ -0,0 +1,129 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
import talib
|
||||||
|
from db.db_connection import create_client
|
||||||
|
from utils.data_utils import (
|
||||||
|
get_stock_data, validate_signal_date, print_signal,
|
||||||
|
save_signals_to_csv, get_qualified_stocks
|
||||||
|
)
|
||||||
|
from utils.scanner_utils import initialize_scanner, process_signal_data
|
||||||
|
from trading.position_calculator import PositionCalculator
|
||||||
|
|
||||||
|
# Dictionary mapping pattern names to their functions and descriptions
|
||||||
|
CANDLESTICK_PATTERNS = {
|
||||||
|
'BULLISH_ENGULFING': {
|
||||||
|
'function': talib.CDLENGULFING,
|
||||||
|
'description': 'Bullish Engulfing Pattern'
|
||||||
|
},
|
||||||
|
'HAMMER': {
|
||||||
|
'function': talib.CDLHAMMER,
|
||||||
|
'description': 'Hammer Pattern'
|
||||||
|
},
|
||||||
|
'MORNING_STAR': {
|
||||||
|
'function': talib.CDLMORNINGSTAR,
|
||||||
|
'description': 'Morning Star Pattern'
|
||||||
|
},
|
||||||
|
'PIERCING_LINE': {
|
||||||
|
'function': talib.CDLPIERCING,
|
||||||
|
'description': 'Piercing Line Pattern'
|
||||||
|
},
|
||||||
|
'THREE_WHITE_SOLDIERS': {
|
||||||
|
'function': talib.CDL3WHITESOLDIERS,
|
||||||
|
'description': 'Three White Soldiers Pattern'
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def check_entry_signal(df: pd.DataFrame) -> list:
|
||||||
|
"""
|
||||||
|
Check for bullish candlestick patterns
|
||||||
|
|
||||||
|
Args:
|
||||||
|
df (pd.DataFrame): DataFrame with OHLCV data
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: List of tuples (signal, date, signal_data) for each signal found
|
||||||
|
"""
|
||||||
|
if len(df) < 5: # Need at least 5 bars for pattern recognition
|
||||||
|
return []
|
||||||
|
|
||||||
|
signals = []
|
||||||
|
|
||||||
|
# Calculate all patterns
|
||||||
|
pattern_signals = {}
|
||||||
|
for pattern_name, pattern_info in CANDLESTICK_PATTERNS.items():
|
||||||
|
pattern_signals[pattern_name] = pattern_info['function'](
|
||||||
|
df['open'].values,
|
||||||
|
df['high'].values,
|
||||||
|
df['low'].values,
|
||||||
|
df['close'].values
|
||||||
|
)
|
||||||
|
|
||||||
|
# Look for signals in the last candle
|
||||||
|
i = len(df) - 1
|
||||||
|
found_patterns = []
|
||||||
|
|
||||||
|
for pattern_name, pattern_values in pattern_signals.items():
|
||||||
|
# Check if we have a bullish signal (value > 0)
|
||||||
|
if pattern_values[i] > 0:
|
||||||
|
found_patterns.append(CANDLESTICK_PATTERNS[pattern_name]['description'])
|
||||||
|
|
||||||
|
if found_patterns:
|
||||||
|
signal_data = {
|
||||||
|
'price': df.iloc[i]['close'],
|
||||||
|
'patterns': ', '.join(found_patterns),
|
||||||
|
'pattern_count': len(found_patterns)
|
||||||
|
}
|
||||||
|
signals.append((True, df.iloc[i]['date'], signal_data))
|
||||||
|
|
||||||
|
return signals
|
||||||
|
|
||||||
|
def run_candlestick_scanner(min_price: float, max_price: float, min_volume: int,
|
||||||
|
portfolio_size: float = None, interval: str = "1d",
|
||||||
|
start_date: datetime = None, end_date: datetime = None) -> None:
|
||||||
|
"""
|
||||||
|
Run candlestick pattern scanner to find bullish patterns
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Initialize scanner components
|
||||||
|
interval, start_date, end_date, qualified_stocks, calculator = initialize_scanner(
|
||||||
|
min_price=min_price,
|
||||||
|
max_price=max_price,
|
||||||
|
min_volume=min_volume,
|
||||||
|
portfolio_size=portfolio_size,
|
||||||
|
interval=interval,
|
||||||
|
start_date=start_date,
|
||||||
|
end_date=end_date
|
||||||
|
)
|
||||||
|
|
||||||
|
if not qualified_stocks:
|
||||||
|
return
|
||||||
|
|
||||||
|
bullish_signals = []
|
||||||
|
|
||||||
|
for ticker, current_price, current_volume, last_update, stock_type in qualified_stocks:
|
||||||
|
try:
|
||||||
|
df = get_stock_data(ticker, start_date, end_date, interval)
|
||||||
|
|
||||||
|
if df.empty or len(df) < 5: # Need at least 5 bars
|
||||||
|
continue
|
||||||
|
|
||||||
|
signals = check_entry_signal(df)
|
||||||
|
for signal, signal_date, signal_data in signals:
|
||||||
|
signal_data['date'] = signal_date
|
||||||
|
entry_data = process_signal_data(
|
||||||
|
ticker, signal_data, current_volume,
|
||||||
|
last_update, stock_type, calculator
|
||||||
|
)
|
||||||
|
bullish_signals.append(entry_data)
|
||||||
|
print_signal(entry_data, "🕯️") # Candlestick emoji
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing {ticker}: {str(e)}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
save_signals_to_csv(bullish_signals, 'candlestick')
|
||||||
|
return bullish_signals
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error during scan: {str(e)}")
|
||||||
|
return []
|
||||||
Loading…
Reference in New Issue
Block a user