refactor: standardize ATR EMA scanner to scan entire date range

This commit is contained in:
Bobby (aider) 2025-02-08 20:05:29 -08:00
parent cea43c4d32
commit 15304106ac

View File

@ -7,41 +7,53 @@ from trading.position_calculator import PositionCalculator
from utils.data_utils import get_stock_data, validate_signal_date, print_signal, save_signals_to_csv
from indicators.three_atr_ema import ThreeATREMAIndicator
def check_atr_ema_bullish_signal(df: pd.DataFrame) -> bool:
"""Check for bullish signal based on ATR EMA indicator"""
# Get latest values from DataFrame
last_price = df.iloc[-1]
previous_price = df.iloc[-2] # Get the previous row for comparison
def check_entry_signal(df: pd.DataFrame) -> list:
"""
Check for entry signals based on Three ATR EMA strategy throughout the date range
Args:
df (pd.DataFrame): DataFrame with price data
Returns:
list: List of tuples (signal, date, signal_data) for each signal found
"""
if len(df) < 2: # Need at least 2 bars for comparison
return []
indicator = ThreeATREMAIndicator()
results = indicator.calculate(df)
indicator = ThreeATREMAIndicator()
results = indicator.calculate(df)
last_bands = results.iloc[-1]
print(f"\nSunnyBands Indicators:")
print(f"DMA: ${last_bands['dma']:.2f}")
print(f"Upper Band: ${last_bands['upper_band']:.2f}")
print(f"Lower Band: ${last_bands['lower_band']:.2f}")
print(f"Bullish Signal: {'Yes' if last_bands['signal'] else 'No'}")
def check_atr_ema_buy_condition(df: pd.DataFrame) -> tuple:
"""Check if price is below EMA and moving up through lower ATR band"""
# Get latest values from DataFrame
last_price = df.iloc[-1]
previous_price = df.iloc[-2] # Get the previous row for comparison
results = ThreeATREMAIndicator().calculate(df) # Ensure results are calculated here
# Check if price is below EMA and has started moving up
ema = results['ema'].iloc[-1]
lower_band = results['lower_band'].iloc[-1]
if len(results) < 2:
return []
signal = (
last_price['close'] < ema and
previous_price['close'] <= lower_band and
last_price['close'] > previous_price['close']
)
signals = []
return signal, last_price['date'] if signal else None, results.iloc[-1]
# Start from index 1 to compare with previous
for i in range(1, len(df)):
current = df.iloc[i]
previous = df.iloc[i-1]
# Get indicator values
ema = results['ema'].iloc[i]
lower_band = results['lower_band'].iloc[i]
prev_lower_band = results['lower_band'].iloc[i-1]
# Entry conditions
entry_signal = (
current['close'] < ema and
previous['close'] <= prev_lower_band and
current['close'] > previous['close']
)
if entry_signal:
signal_data = {
'price': current['close'],
'ema': ema,
'lower_band': lower_band
}
signals.append((True, current['date'], signal_data))
return signals
def run_atr_ema_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None) -> None:
print(f"\nScanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}")
@ -110,30 +122,32 @@ def run_atr_ema_scanner(min_price: float, max_price: float, min_volume: int, por
results = indicator.calculate(df)
# Check for signals
signal, signal_date, indicator_values = check_atr_ema_buy_condition(df)
if signal:
target_price = indicator_values['upper_band']
# Check for signals throughout the date range
signals = check_entry_signal(df)
for signal, signal_date, signal_data in signals:
entry_data = {
'ticker': ticker,
'entry_price': signal_data['price'],
'target_price': signal_data['ema'],
'volume': current_volume,
'signal_date': signal_date,
'last_update': datetime.fromtimestamp(last_update/1000000000)
}
if calculator:
position = calculator.calculate_position_size(current_price, target_price)
if position['shares'] > 0:
signal_data = {
'ticker': ticker,
'entry_price': current_price,
'target_price': target_price,
'signal_date': signal_date,
'volume': current_volume,
'last_update': datetime.fromtimestamp(last_update/1000000000),
'shares': position['shares'],
'position_size': position['position_value'],
'stop_loss': position['stop_loss'],
'risk_amount': position['potential_loss'],
'profit_amount': position['potential_profit'],
'risk_reward_ratio': position['risk_reward_ratio']
}
bullish_signals.append(signal_data)
print_signal(signal_data, "🟢")
position = calculator.calculate_position_size(entry_data['entry_price'])
potential_profit = (entry_data['target_price'] - entry_data['entry_price']) * position['shares']
entry_data.update({
'shares': position['shares'],
'position_size': position['position_value'],
'stop_loss': position['stop_loss'],
'risk_amount': position['potential_loss'],
'profit_amount': potential_profit,
'risk_reward_ratio': abs(potential_profit / position['potential_loss']) if position['potential_loss'] != 0 else 0
})
bullish_signals.append(entry_data)
print_signal(entry_data, "🟢")
except Exception as e:
print(f"Error processing {ticker}: {str(e)}")