feat: Add multi-ticker backtest support with performance filtering

This commit is contained in:
Bobby (aider) 2025-02-14 00:00:53 -08:00
parent 32907718a1
commit 282b740144

View File

@ -232,8 +232,26 @@ def backtesting_page():
with left_col: with left_col:
st.subheader("Backtest Settings") st.subheader("Backtest Settings")
# Ticker selection # Add radio button for single/multiple ticker mode
ticker = st.text_input("Enter Ticker Symbol", value="AAPL").upper() test_mode = st.radio("Testing Mode", ["Single Ticker", "Multiple Tickers"])
if test_mode == "Single Ticker":
# Single ticker input
ticker = st.text_input("Enter Ticker Symbol", value="AAPL").upper()
tickers = [ticker]
else:
# Multiple ticker input
ticker_input = st.text_area(
"Enter Ticker Symbols (one per line)",
value="AAPL\nMSFT\nGOOG"
)
tickers = [t.strip().upper() for t in ticker_input.split('\n') if t.strip()]
# Add minimum performance filters
st.subheader("Performance Filters")
min_return = st.number_input("Minimum Return (%)", value=10.0)
min_sharpe = st.number_input("Minimum Sharpe Ratio", value=1.0)
max_drawdown = st.number_input("Maximum Drawdown (%)", value=-20.0)
# Date range selection # Date range selection
col1, col2 = st.columns(2) col1, col2 = st.columns(2)
@ -287,30 +305,79 @@ def backtesting_page():
if st.button("Run Backtest"): if st.button("Run Backtest"):
with st.spinner('Running backtest...'): with st.spinner('Running backtest...'):
# Fetch data
# Convert date to datetime
start_datetime = datetime.combine(start_date, datetime.min.time()) start_datetime = datetime.combine(start_date, datetime.min.time())
end_datetime = datetime.combine(end_date, datetime.min.time()) end_datetime = datetime.combine(end_date, datetime.min.time())
df = get_stock_data(ticker, start_datetime, end_datetime, 'daily')
if df.empty: if test_mode == "Single Ticker":
st.error("No data available for the selected period") # Single ticker logic
return df = get_stock_data(ticker, start_datetime, end_datetime, 'daily')
if df.empty:
try: st.error("No data available for the selected period")
df = prepare_data_for_backtest(df) return
if optimize: try:
results = run_optimization(df, indicator_settings) df = prepare_data_for_backtest(df)
with right_col: if optimize:
display_optimization_results(results) results = run_optimization(df, indicator_settings)
else: with right_col:
results = run_single_backtest(df, indicator_settings) display_optimization_results(results)
with right_col: else:
display_backtest_results(results) results = run_single_backtest(df, indicator_settings)
with right_col:
display_backtest_results(results)
except Exception as e:
st.error(f"Error during backtest: {str(e)}")
else:
# Multiple ticker logic
try:
results_df = run_multi_ticker_backtest(
tickers, start_datetime, end_datetime, indicator_settings
)
except Exception as e: # Apply performance filters
st.error(f"Error during backtest: {str(e)}") filtered_df = results_df[
(results_df['Return [%]'] >= min_return) &
(results_df['Sharpe Ratio'] >= min_sharpe) &
(results_df['Max Drawdown [%]'] >= max_drawdown)
]
with right_col:
st.subheader("Multi-Ticker Results")
# Display summary statistics
st.write("### Summary Statistics")
summary = pd.DataFrame({
'Metric': ['Average Return', 'Average Sharpe', 'Average Drawdown', 'Success Rate'],
'Value': [
f"{results_df['Return [%]'].mean():.2f}%",
f"{results_df['Sharpe Ratio'].mean():.2f}",
f"{results_df['Max Drawdown [%]'].mean():.2f}%",
f"{(len(filtered_df) / len(results_df) * 100):.1f}%"
]
})
st.table(summary)
# Display full results
st.write("### All Results")
st.dataframe(results_df.sort_values('Return [%]', ascending=False))
# Display filtered results
st.write("### Filtered Results (Meeting Criteria)")
st.dataframe(filtered_df.sort_values('Return [%]', ascending=False))
# Create a downloadable CSV
csv = results_df.to_csv(index=False)
st.download_button(
"Download Results CSV",
csv,
"backtest_results.csv",
"text/csv",
key='download-csv'
)
except Exception as e:
st.error(f"Error during multi-ticker backtest: {str(e)}")
def run_optimization(df: pd.DataFrame, indicator_settings: Dict) -> List: def run_optimization(df: pd.DataFrame, indicator_settings: Dict) -> List:
"""Run optimization with different parameter combinations""" """Run optimization with different parameter combinations"""
@ -390,6 +457,47 @@ def display_optimization_results(results: List):
st.subheader("Optimization Results") st.subheader("Optimization Results")
st.dataframe(df_results.sort_values('Return [%]', ascending=False)) st.dataframe(df_results.sort_values('Return [%]', ascending=False))
def run_multi_ticker_backtest(tickers: list, start_date: datetime, end_date: datetime, indicator_settings: Dict) -> pd.DataFrame:
"""Run backtest across multiple tickers and aggregate results"""
all_results = []
for ticker in tickers:
try:
print(f"\nTesting strategy on {ticker}")
df = get_stock_data(ticker, start_date, end_date, 'daily')
if df.empty:
print(f"No data available for {ticker}")
continue
df = prepare_data_for_backtest(df)
# Run backtest
DynamicStrategy.indicator_configs = indicator_settings
bt = Backtest(df, DynamicStrategy, cash=100000, commission=.002)
stats = bt.run()
# Store results
result = {
'Ticker': ticker,
'Return [%]': stats['Return [%]'],
'Sharpe Ratio': stats['Sharpe Ratio'],
'Max Drawdown [%]': stats['Max. Drawdown [%]'],
'Win Rate [%]': stats['Win Rate [%]'],
'Number of Trades': stats['# Trades']
}
all_results.append(result)
print(f"{ticker} - Return: {stats['Return [%]']:.2f}%, "
f"Sharpe: {stats['Sharpe Ratio']:.2f}, "
f"Drawdown: {stats['Max. Drawdown [%]']:.2f}%")
except Exception as e:
print(f"Error processing {ticker}: {str(e)}")
continue
return pd.DataFrame(all_results)
def display_backtest_results(results: Dict): def display_backtest_results(results: Dict):
"""Display single backtest results with metrics and plots""" """Display single backtest results with metrics and plots"""
st.subheader("Backtest Results") st.subheader("Backtest Results")