refactor: Resolve circular import by creating common_utils module

This commit is contained in:
Bobby (aider) 2025-02-12 19:50:00 -08:00
parent 8ea0895f73
commit 3e98ba4e9d
3 changed files with 174 additions and 32 deletions

172
src/utils/common_utils.py Normal file
View File

@ -0,0 +1,172 @@
import os
import pandas as pd
from datetime import datetime, timedelta
from typing import Optional
from db.db_connection import create_client
def get_user_input(prompt: str, input_type: type = str, allow_empty: bool = False) -> Optional[any]:
"""
Get user input with escape option
"""
while True:
value = input(f"{prompt} (q to quit): ").strip()
if value.lower() in ['q', 'quit', 'exit']:
return None
if not value and allow_empty:
return None
try:
if input_type == bool:
return value.lower() in ['y', 'yes', 'true', '1']
return input_type(value)
except ValueError:
print(f"Please enter a valid {input_type.__name__}")
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
"""
Fetch and resample stock data based on the chosen interval
"""
try:
with create_client() as client:
# Expand window to get enough data for calculations
start_date = start_date - timedelta(days=90)
query = f"""
SELECT
toDateTime(window_start/1000000000) as date,
open,
high,
low,
close,
volume
FROM stock_db.stock_prices
WHERE ticker = '{ticker}'
AND window_start BETWEEN
{int(start_date.timestamp() * 1e9)} AND
{int(end_date.timestamp() * 1e9)}
AND toDateTime(window_start/1000000000) <= now()
ORDER BY date ASC
"""
result = client.query(query)
if not result.result_rows:
return pd.DataFrame()
df = pd.DataFrame(
result.result_rows,
columns=['date', 'open', 'high', 'low', 'close', 'volume']
)
numeric_columns = ['open', 'high', 'low', 'close', 'volume']
for col in numeric_columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
df['date'] = pd.to_datetime(df['date'])
df.set_index('date', inplace=True)
if interval == 'daily':
rule = '1D'
elif interval == '5min':
rule = '5T'
elif interval == '15min':
rule = '15T'
elif interval == '30min':
rule = '30T'
elif interval == '1hour':
rule = '1H'
else:
rule = '1D'
resampled = df.resample(rule).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
resampled.reset_index(inplace=True)
mask = (resampled['date'] >= start_date + timedelta(days=89)) & (resampled['date'] <= end_date)
resampled = resampled.loc[mask]
if resampled['close'].isnull().any():
print(f"Warning: Found null values in close prices")
resampled = resampled.dropna(subset=['close'])
if resampled.empty or 'close' not in resampled.columns:
return pd.DataFrame()
return resampled
except Exception as e:
print(f"Error fetching {ticker} data: {str(e)}")
return pd.DataFrame()
def get_qualified_stocks(start_date: datetime, end_date: datetime, min_price: float, max_price: float, min_volume: int) -> list:
"""
Get qualified stocks based on price and volume criteria within date range
"""
try:
start_ts = int(start_date.timestamp() * 1000000000)
end_ts = int(end_date.timestamp() * 1000000000)
with create_client() as client:
query = f"""
WITH filtered_data AS (
SELECT
sp.ticker,
sp.window_start,
sp.close,
sp.volume,
t.type as stock_type,
toDateTime(toDateTime(sp.window_start/1000000000)) as trade_date
FROM stock_db.stock_prices sp
JOIN stock_db.stock_tickers t ON sp.ticker = t.ticker
WHERE window_start BETWEEN {start_ts} AND {end_ts}
AND toDateTime(window_start/1000000000) <= now()
AND close BETWEEN {min_price} AND {max_price}
AND volume >= {min_volume}
),
daily_data AS (
SELECT
ticker,
stock_type,
toDate(trade_date) as date,
argMax(close, window_start) as daily_close,
sum(volume) as daily_volume
FROM filtered_data
GROUP BY ticker, stock_type, toDate(trade_date)
),
latest_data AS (
SELECT
ticker,
any(stock_type) as stock_type,
argMax(daily_close, date) as last_close,
sum(daily_volume) as total_volume,
max(toUnixTimestamp(date)) as last_update
FROM daily_data
GROUP BY ticker
HAVING last_close BETWEEN {min_price} AND {max_price}
)
SELECT
ticker,
last_close,
total_volume,
last_update,
stock_type
FROM latest_data
ORDER BY ticker
"""
result = client.query(query)
qualified_stocks = [(row[0], row[1], row[2], row[3], row[4]) for row in result.result_rows]
return qualified_stocks
except Exception as e:
print(f"Error getting qualified stocks: {str(e)}")
return []

View File

@ -2,10 +2,8 @@ import os
import pandas as pd
import yfinance as yf
from datetime import datetime, timedelta
from db.db_connection import create_client
from screener.user_input import get_interval_choice, get_date_range
from trading.position_calculator import PositionCalculator
from utils.scanner_utils import initialize_scanner, get_user_input
from utils.common_utils import get_user_input, get_stock_data, get_qualified_stocks
from typing import Optional
def get_float_input(prompt: str) -> Optional[float]:

View File

@ -1,37 +1,9 @@
from datetime import datetime, timedelta
from utils.data_utils import get_stock_data, get_qualified_stocks
from utils.common_utils import get_user_input, get_stock_data, get_qualified_stocks
from screener.user_input import get_interval_choice, get_date_range
from trading.position_calculator import PositionCalculator
from typing import Optional
def get_user_input(prompt: str, input_type: type = str, allow_empty: bool = False) -> Optional[any]:
"""
Get user input with escape option
Args:
prompt (str): Input prompt to display
input_type (type): Expected input type (str, float, int)
allow_empty (bool): Whether to allow empty input
Returns:
Optional[any]: Converted input value or None if user wants to exit
"""
while True:
value = input(f"{prompt} (q to quit): ").strip()
if value.lower() in ['q', 'quit', 'exit']:
return None
if not value and allow_empty:
return None
try:
if input_type == bool:
return value.lower() in ['y', 'yes', 'true', '1']
return input_type(value)
except ValueError:
print(f"Please enter a valid {input_type.__name__}")
def initialize_scanner(min_price: float, max_price: float, min_volume: int,
portfolio_size: float = None, interval: str = "1d",
start_date: datetime = None, end_date: datetime = None) -> tuple: