fix: Align except block with try block in get_stock_data function
This commit is contained in:
parent
b5125a409f
commit
4f545d5041
@ -33,89 +33,90 @@ def get_interval_choice() -> str:
|
||||
|
||||
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
|
||||
"""Fetch stock data from the database"""
|
||||
client = create_client()
|
||||
|
||||
# Calculate proper date range (looking back from today)
|
||||
end_date = datetime.now()
|
||||
start_date = end_date - timedelta(days=60) # 60 days of history
|
||||
|
||||
if interval == "daily":
|
||||
table = "stock_prices_daily"
|
||||
date_col = "date"
|
||||
query = f"""
|
||||
SELECT
|
||||
{date_col} as date,
|
||||
open,
|
||||
high,
|
||||
low,
|
||||
close,
|
||||
volume
|
||||
FROM stock_db.{table}
|
||||
WHERE ticker = '{ticker}'
|
||||
AND {date_col} BETWEEN '{start_date.date()}' AND '{end_date.date()}'
|
||||
ORDER BY date ASC
|
||||
"""
|
||||
else:
|
||||
table = "stock_prices"
|
||||
date_col = "window_start"
|
||||
minutes_map = {
|
||||
"5min": 5,
|
||||
"15min": 15,
|
||||
"30min": 30,
|
||||
"1hour": 60
|
||||
}
|
||||
minutes = minutes_map[interval]
|
||||
try:
|
||||
client = create_client()
|
||||
|
||||
# Get 5-minute bars and resample them to the desired interval
|
||||
query = f"""
|
||||
SELECT
|
||||
fromUnixTimestamp(intDiv(window_start/1000000000, 300) * 300) as interval_start,
|
||||
min(open) as open,
|
||||
max(high) as high,
|
||||
min(low) as low,
|
||||
argMax(close, window_start) as close,
|
||||
sum(volume) as volume
|
||||
FROM stock_db.{table}
|
||||
WHERE ticker = '{ticker}'
|
||||
AND window_start/1000000000 BETWEEN
|
||||
toUnixTimestamp('{start_date.date()}') AND
|
||||
toUnixTimestamp('{end_date.date()}')
|
||||
GROUP BY interval_start
|
||||
ORDER BY interval_start ASC
|
||||
"""
|
||||
|
||||
print("\nExecuting Query:")
|
||||
print(query) # Debugging: Print the query to verify its correctness
|
||||
|
||||
result = client.query(query)
|
||||
if not result.result_rows:
|
||||
print(f"No data found for {ticker}")
|
||||
return pd.DataFrame()
|
||||
# Calculate proper date range (looking back from today)
|
||||
end_date = datetime.now()
|
||||
start_date = end_date - timedelta(days=60) # 60 days of history
|
||||
|
||||
df = pd.DataFrame(
|
||||
result.result_rows,
|
||||
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
)
|
||||
if interval == "daily":
|
||||
table = "stock_prices_daily"
|
||||
date_col = "date"
|
||||
query = f"""
|
||||
SELECT
|
||||
{date_col} as date,
|
||||
open,
|
||||
high,
|
||||
low,
|
||||
close,
|
||||
volume
|
||||
FROM stock_db.{table}
|
||||
WHERE ticker = '{ticker}'
|
||||
AND {date_col} BETWEEN '{start_date.date()}' AND '{end_date.date()}'
|
||||
ORDER BY date ASC
|
||||
"""
|
||||
else:
|
||||
table = "stock_prices"
|
||||
date_col = "window_start"
|
||||
minutes_map = {
|
||||
"5min": 5,
|
||||
"15min": 15,
|
||||
"30min": 30,
|
||||
"1hour": 60
|
||||
}
|
||||
minutes = minutes_map[interval]
|
||||
|
||||
# Get 5-minute bars and resample them to the desired interval
|
||||
query = f"""
|
||||
SELECT
|
||||
fromUnixTimestamp(intDiv(window_start/1000000000, 300) * 300) as interval_start,
|
||||
min(open) as open,
|
||||
max(high) as high,
|
||||
min(low) as low,
|
||||
argMax(close, window_start) as close,
|
||||
sum(volume) as volume
|
||||
FROM stock_db.{table}
|
||||
WHERE ticker = '{ticker}'
|
||||
AND window_start/1000000000 BETWEEN
|
||||
toUnixTimestamp('{start_date.date()}') AND
|
||||
toUnixTimestamp('{end_date.date()}')
|
||||
GROUP BY interval_start
|
||||
ORDER BY interval_start ASC
|
||||
"""
|
||||
|
||||
print("\nExecuting Query:")
|
||||
print(query) # Debugging: Print the query to verify its correctness
|
||||
|
||||
result = client.query(query)
|
||||
if not result.result_rows:
|
||||
print(f"No data found for {ticker}")
|
||||
return pd.DataFrame()
|
||||
|
||||
df = pd.DataFrame(
|
||||
result.result_rows,
|
||||
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
)
|
||||
|
||||
if interval != "daily" and interval != "5min":
|
||||
# Resample to desired interval
|
||||
df.set_index('date', inplace=True)
|
||||
minutes = minutes_map[interval]
|
||||
rule = f'{minutes}T'
|
||||
|
||||
df = df.resample(rule).agg({
|
||||
'open': 'first',
|
||||
'high': 'max',
|
||||
'low': 'min',
|
||||
'close': 'last',
|
||||
'volume': 'sum'
|
||||
}).dropna()
|
||||
|
||||
df.reset_index(inplace=True)
|
||||
|
||||
return df
|
||||
if interval != "daily" and interval != "5min":
|
||||
# Resample to desired interval
|
||||
df.set_index('date', inplace=True)
|
||||
minutes = minutes_map[interval]
|
||||
rule = f'{minutes}T'
|
||||
|
||||
df = df.resample(rule).agg({
|
||||
'open': 'first',
|
||||
'high': 'max',
|
||||
'low': 'min',
|
||||
'close': 'last',
|
||||
'volume': 'sum'
|
||||
}).dropna()
|
||||
|
||||
df.reset_index(inplace=True)
|
||||
|
||||
return df
|
||||
|
||||
except Exception as e:
|
||||
except Exception as e:
|
||||
print(f"Error fetching data for {ticker}: {str(e)}")
|
||||
return pd.DataFrame()
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user