feat: Add SunnyBand scanner functionality to screener module
This commit is contained in:
parent
a3a87c1e7d
commit
5273b659e1
139
src/screener/t_sunnyband.py
Normal file
139
src/screener/t_sunnyband.py
Normal file
@ -0,0 +1,139 @@
|
||||
from datetime import datetime, timedelta
|
||||
import pandas as pd
|
||||
from db.db_connection import create_client
|
||||
from indicators.sunny_bands import SunnyBands
|
||||
|
||||
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime) -> pd.DataFrame:
|
||||
"""Fetch stock data from the database"""
|
||||
client = create_client()
|
||||
|
||||
query = f"""
|
||||
SELECT
|
||||
date,
|
||||
open,
|
||||
high,
|
||||
low,
|
||||
close,
|
||||
volume
|
||||
FROM stock_db.stock_prices_daily
|
||||
WHERE ticker = '{ticker}'
|
||||
AND date BETWEEN '{start_date.date()}' AND '{end_date.date()}'
|
||||
ORDER BY date ASC
|
||||
"""
|
||||
|
||||
result = client.query(query)
|
||||
|
||||
return pd.DataFrame(
|
||||
result.result_rows,
|
||||
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
||||
)
|
||||
|
||||
def get_valid_tickers(min_price: float, max_price: float, min_volume: int) -> list:
|
||||
"""Get tickers that meet the price and volume criteria"""
|
||||
client = create_client()
|
||||
yesterday = (datetime.now() - timedelta(days=1)).date()
|
||||
|
||||
query = f"""
|
||||
SELECT DISTINCT ticker
|
||||
FROM stock_db.stock_prices_daily
|
||||
WHERE date = '{yesterday}'
|
||||
AND close BETWEEN {min_price} AND {max_price}
|
||||
AND volume >= {min_volume}
|
||||
"""
|
||||
|
||||
result = client.query(query)
|
||||
return [row[0] for row in result.result_rows]
|
||||
|
||||
def run_sunny_scanner(min_price: float, max_price: float, min_volume: int) -> None:
|
||||
"""Run the SunnyBand scanner and save results"""
|
||||
# Get date range (60 days of data for calculations)
|
||||
end_date = datetime.now()
|
||||
start_date = end_date - timedelta(days=60)
|
||||
|
||||
# Get valid tickers
|
||||
tickers = get_valid_tickers(min_price, max_price, min_volume)
|
||||
|
||||
if not tickers:
|
||||
print("No stocks found matching your criteria.")
|
||||
return
|
||||
|
||||
print(f"\nScanning {len(tickers)} stocks...")
|
||||
|
||||
# Initialize results lists
|
||||
bullish_signals = []
|
||||
bearish_signals = []
|
||||
|
||||
# Initialize SunnyBands indicator
|
||||
sunny = SunnyBands()
|
||||
|
||||
# Scan each ticker
|
||||
for ticker in tickers:
|
||||
try:
|
||||
# Get price data
|
||||
df = get_stock_data(ticker, start_date, end_date)
|
||||
|
||||
if len(df) < 50: # Need enough data for the indicator
|
||||
continue
|
||||
|
||||
# Calculate SunnyBands
|
||||
results = sunny.calculate(df)
|
||||
|
||||
# Check last day's signals
|
||||
last_day = df.iloc[-1]
|
||||
|
||||
if results['bullish_signal'].iloc[-1]:
|
||||
bullish_signals.append({
|
||||
'ticker': ticker,
|
||||
'price': last_day['close'],
|
||||
'volume': last_day['volume'],
|
||||
'date': last_day['date'],
|
||||
'dma': results['dma'].iloc[-1],
|
||||
'lower_band': results['lower_band'].iloc[-1]
|
||||
})
|
||||
|
||||
elif results['bearish_signal'].iloc[-1]:
|
||||
bearish_signals.append({
|
||||
'ticker': ticker,
|
||||
'price': last_day['close'],
|
||||
'volume': last_day['volume'],
|
||||
'date': last_day['date'],
|
||||
'dma': results['dma'].iloc[-1],
|
||||
'upper_band': results['upper_band'].iloc[-1]
|
||||
})
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {ticker}: {str(e)}")
|
||||
|
||||
# Save and display results
|
||||
output_date = datetime.now().strftime("%Y%m%d")
|
||||
|
||||
if bullish_signals:
|
||||
print("\n🟢 Bullish Signals:")
|
||||
df_bullish = pd.DataFrame(bullish_signals)
|
||||
bullish_file = f'src/reports/sunny_bullish_{output_date}.csv'
|
||||
df_bullish.to_csv(bullish_file, index=False)
|
||||
print(f"\nSaved {len(bullish_signals)} bullish signals to {bullish_file}")
|
||||
|
||||
for signal in bullish_signals:
|
||||
print(f"\n{signal['ticker']}:")
|
||||
print(f"Price: ${signal['price']:.2f}")
|
||||
print(f"Volume: {signal['volume']:,}")
|
||||
print(f"DMA: ${signal['dma']:.2f}")
|
||||
print(f"Lower Band: ${signal['lower_band']:.2f}")
|
||||
|
||||
if bearish_signals:
|
||||
print("\n🔴 Bearish Signals:")
|
||||
df_bearish = pd.DataFrame(bearish_signals)
|
||||
bearish_file = f'src/reports/sunny_bearish_{output_date}.csv'
|
||||
df_bearish.to_csv(bearish_file, index=False)
|
||||
print(f"\nSaved {len(bearish_signals)} bearish signals to {bearish_file}")
|
||||
|
||||
for signal in bearish_signals:
|
||||
print(f"\n{signal['ticker']}:")
|
||||
print(f"Price: ${signal['price']:.2f}")
|
||||
print(f"Volume: {signal['volume']:,}")
|
||||
print(f"DMA: ${signal['dma']:.2f}")
|
||||
print(f"Upper Band: ${signal['upper_band']:.2f}")
|
||||
|
||||
if not bullish_signals and not bearish_signals:
|
||||
print("\nNo signals found for today.")
|
||||
Loading…
Reference in New Issue
Block a user