feat: Resolve circular imports and create scanner_utils module
This commit is contained in:
parent
3dbaed0399
commit
529875527b
@ -1,10 +1 @@
|
||||
# Add explicit imports for scanner modules
|
||||
from .t_atr_ema import run_atr_ema_scanner
|
||||
from .t_atr_ema_v2 import run_atr_ema_scanner_v2
|
||||
from .t_sunnyband import run_sunny_scanner
|
||||
|
||||
__all__ = [
|
||||
'run_atr_ema_scanner',
|
||||
'run_atr_ema_scanner_v2',
|
||||
'run_sunny_scanner'
|
||||
]
|
||||
# Empty file
|
||||
|
||||
@ -1,9 +1,6 @@
|
||||
import pandas as pd
|
||||
from utils.data_utils import (
|
||||
get_stock_data, validate_signal_date, print_signal,
|
||||
save_signals_to_csv, get_qualified_stocks,
|
||||
initialize_scanner, process_signal_data
|
||||
)
|
||||
from utils.scanner_utils import initialize_scanner, process_signal_data
|
||||
from utils.data_utils import get_stock_data, validate_signal_date, print_signal, save_signals_to_csv
|
||||
from indicators.three_atr_ema import ThreeATREMAIndicator
|
||||
|
||||
def check_entry_signal(df: pd.DataFrame) -> list:
|
||||
|
||||
@ -1,3 +1 @@
|
||||
from .data_utils import get_stock_data
|
||||
|
||||
__all__ = ['get_stock_data']
|
||||
# Empty file
|
||||
|
||||
61
src/utils/scanner_utils.py
Normal file
61
src/utils/scanner_utils.py
Normal file
@ -0,0 +1,61 @@
|
||||
from datetime import datetime, timedelta
|
||||
from utils.data_utils import get_user_input, get_stock_data, get_qualified_stocks
|
||||
from screener.user_input import get_interval_choice, get_date_range
|
||||
from trading.position_calculator import PositionCalculator
|
||||
|
||||
def initialize_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None) -> tuple:
|
||||
"""
|
||||
Initialize common scanner components
|
||||
"""
|
||||
print(f"\nScanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}")
|
||||
|
||||
interval = get_interval_choice()
|
||||
start_date, end_date = get_date_range()
|
||||
|
||||
qualified_stocks = get_qualified_stocks(start_date, end_date, min_price, max_price, min_volume)
|
||||
|
||||
if not qualified_stocks:
|
||||
print("No stocks found matching criteria.")
|
||||
return None, None, None, None, None
|
||||
|
||||
print(f"\nFound {len(qualified_stocks)} stocks matching criteria")
|
||||
|
||||
# Initialize position calculator if portfolio size provided
|
||||
calculator = None
|
||||
if portfolio_size and portfolio_size > 0:
|
||||
calculator = PositionCalculator(
|
||||
account_size=portfolio_size,
|
||||
risk_percentage=1.0,
|
||||
stop_loss_percentage=7.0
|
||||
)
|
||||
|
||||
return interval, start_date, end_date, qualified_stocks, calculator
|
||||
|
||||
def process_signal_data(ticker: str, signal_data: dict, current_volume: int,
|
||||
last_update: int, stock_type: str, calculator: PositionCalculator = None) -> dict:
|
||||
"""
|
||||
Process and format signal data consistently
|
||||
"""
|
||||
entry_data = {
|
||||
'ticker': ticker,
|
||||
'entry_price': signal_data['price'],
|
||||
'target_price': signal_data.get('ema', signal_data.get('upper_band')), # Handle both ATR and Sunny
|
||||
'volume': current_volume,
|
||||
'signal_date': signal_data.get('date', datetime.now()),
|
||||
'stock_type': stock_type,
|
||||
'last_update': datetime.fromtimestamp(last_update/1000000000)
|
||||
}
|
||||
|
||||
if calculator:
|
||||
position = calculator.calculate_position_size(entry_data['entry_price'])
|
||||
potential_profit = (entry_data['target_price'] - entry_data['entry_price']) * position['shares']
|
||||
entry_data.update({
|
||||
'shares': position['shares'],
|
||||
'position_size': position['position_value'],
|
||||
'stop_loss': position['stop_loss'],
|
||||
'risk_amount': position['potential_loss'],
|
||||
'profit_amount': potential_profit,
|
||||
'risk_reward_ratio': abs(potential_profit / position['potential_loss']) if position['potential_loss'] != 0 else 0
|
||||
})
|
||||
|
||||
return entry_data
|
||||
Loading…
Reference in New Issue
Block a user