feat: Use Polygon.io API for fetching current stock prices
This commit is contained in:
parent
744d717938
commit
544bc146cb
@ -1,10 +1,10 @@
|
||||
import os
|
||||
import pandas as pd
|
||||
import yfinance as yf
|
||||
from datetime import datetime, timedelta
|
||||
from trading.position_calculator import PositionCalculator
|
||||
from utils.common_utils import get_user_input, get_stock_data, get_qualified_stocks
|
||||
from typing import Optional
|
||||
import requests
|
||||
|
||||
def get_float_input(prompt: str) -> Optional[float]:
|
||||
return get_user_input(prompt, float)
|
||||
@ -13,79 +13,56 @@ def get_current_prices(tickers: list) -> dict:
|
||||
"""Get current prices for multiple tickers using yfinance"""
|
||||
if not tickers:
|
||||
return {}
|
||||
|
||||
|
||||
polygon_api_key = os.environ.get("POLYGON_API_KEY")
|
||||
if not polygon_api_key:
|
||||
print("Error: POLYGON_API_KEY environment variable not set.")
|
||||
return {}
|
||||
|
||||
prices = {}
|
||||
try:
|
||||
# Create a space-separated string of tickers
|
||||
ticker_str = " ".join(tickers)
|
||||
# Get data for all tickers at once with more reliable settings
|
||||
data = yf.download(
|
||||
ticker_str,
|
||||
period="1d", # Just today's data
|
||||
interval="1d", # Daily interval
|
||||
group_by='ticker',
|
||||
progress=False,
|
||||
prepost=True # Include pre/post market prices
|
||||
)
|
||||
|
||||
# Handle single ticker case
|
||||
if len(tickers) == 1:
|
||||
if isinstance(data, pd.DataFrame) and 'Close' in data.columns:
|
||||
prices[tickers[0]] = float(data['Close'].iloc[-1])
|
||||
else:
|
||||
# Try alternative method
|
||||
for ticker in tickers:
|
||||
url = f"https://api.polygon.io/v2/last/trade/{ticker}?apiKey={polygon_api_key}"
|
||||
response = requests.get(url)
|
||||
|
||||
if response.status_code == 200:
|
||||
data = response.json()
|
||||
try:
|
||||
stock = yf.Ticker(tickers[0])
|
||||
price = stock.info.get('regularMarketPrice', 0.0)
|
||||
prices[tickers[0]] = float(price)
|
||||
except:
|
||||
prices[tickers[0]] = 0.0
|
||||
else:
|
||||
# Handle multiple tickers
|
||||
for ticker in tickers:
|
||||
try:
|
||||
if isinstance(data, pd.DataFrame) and (ticker, 'Close') in data.columns:
|
||||
prices[ticker] = float(data[ticker]['Close'].iloc[-1])
|
||||
else:
|
||||
# Try alternative method
|
||||
stock = yf.Ticker(ticker)
|
||||
price = stock.info.get('regularMarketPrice', 0.0)
|
||||
prices[ticker] = float(price)
|
||||
except:
|
||||
prices[ticker] = data['results']['price']
|
||||
except KeyError:
|
||||
prices[ticker] = 0.0
|
||||
|
||||
# Verify we have prices for all tickers
|
||||
else:
|
||||
print(f"Error fetching price for {ticker}: {response.status_code} - {response.text}")
|
||||
prices[ticker] = 0.0
|
||||
|
||||
# Verify that we have prices for all tickers
|
||||
for ticker in tickers:
|
||||
if ticker not in prices or prices[ticker] == 0:
|
||||
try:
|
||||
stock = yf.Ticker(ticker)
|
||||
price = stock.info.get('regularMarketPrice', 0.0)
|
||||
if price:
|
||||
prices[ticker] = float(price)
|
||||
except:
|
||||
if ticker not in prices:
|
||||
prices[ticker] = 0.0
|
||||
|
||||
print(f"Could not fetch price for {ticker}")
|
||||
prices[ticker] = 0.0
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error in batch price fetch: {e}")
|
||||
# Fall back to individual ticker fetching
|
||||
print(f"Error fetching prices: {e}")
|
||||
# If there's an error, fall back to setting price to 0.0
|
||||
for ticker in tickers:
|
||||
if ticker not in prices:
|
||||
prices[ticker] = 0.0
|
||||
try:
|
||||
stock = yf.Ticker(ticker)
|
||||
price = stock.info.get('regularMarketPrice', 0.0)
|
||||
prices[ticker] = float(price)
|
||||
except:
|
||||
prices[ticker] = 0.0
|
||||
|
||||
|
||||
return prices
|
||||
|
||||
def validate_signal_date(signal_date: datetime) -> datetime:
|
||||
"""
|
||||
Validate and adjust signal date if needed
|
||||
|
||||
|
||||
Args:
|
||||
signal_date (datetime): Signal date to validate
|
||||
|
||||
|
||||
Returns:
|
||||
datetime: Valid signal date (not in future)
|
||||
"""
|
||||
@ -94,10 +71,10 @@ def validate_signal_date(signal_date: datetime) -> datetime:
|
||||
return current_date
|
||||
return signal_date
|
||||
|
||||
def print_signal(signal_data: dict, signal_type: str = "🔍") -> None:
|
||||
def print_signal(signal_ dict, signal_type: str = "🔍") -> None:
|
||||
"""
|
||||
Print standardized signal output
|
||||
|
||||
|
||||
Args:
|
||||
signal_data (dict): Dictionary containing signal information
|
||||
signal_type (str): Emoji indicator for signal type (default: 🔍)
|
||||
@ -117,7 +94,7 @@ def print_signal(signal_data: dict, signal_type: str = "🔍") -> None:
|
||||
def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
||||
"""
|
||||
Save signals to CSV file with standardized format and naming
|
||||
|
||||
|
||||
Args:
|
||||
signals (list): List of signal dictionaries
|
||||
scanner_name (str): Name of the scanner for file naming
|
||||
@ -125,14 +102,12 @@ def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
||||
if not signals:
|
||||
print("\nNo signals found")
|
||||
return
|
||||
|
||||
|
||||
output_dir = 'reports'
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_date = datetime.now().strftime("%Y%m%d_%H%M")
|
||||
output_file = f'{output_dir}/{scanner_name}_{output_date}.csv'
|
||||
|
||||
|
||||
df_signals = pd.DataFrame(signals)
|
||||
df_signals.to_csv(output_file, index=False)
|
||||
print(f"\nSaved {len(signals)} signals to {output_file}")
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user