refactor: Modularize scanner initialization and signal processing
This commit is contained in:
parent
d8b41c8d8a
commit
7f105bfd54
@ -70,32 +70,15 @@ def run_atr_ema_scanner_v2(min_price: float, max_price: float, min_volume: int,
|
||||
min_volume (int): Minimum trading volume
|
||||
portfolio_size (float, optional): Portfolio size for position sizing
|
||||
"""
|
||||
print(f"\nScanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}")
|
||||
|
||||
interval = get_interval_choice()
|
||||
|
||||
start_date, end_date = get_date_range()
|
||||
start_ts = int(start_date.timestamp() * 1000000000)
|
||||
end_ts = int(end_date.timestamp() * 1000000000)
|
||||
|
||||
try:
|
||||
qualified_stocks = get_qualified_stocks(start_date, end_date, min_price, max_price, min_volume)
|
||||
# Initialize scanner components
|
||||
interval, start_date, end_date, qualified_stocks, calculator = initialize_scanner(
|
||||
min_price, max_price, min_volume, portfolio_size
|
||||
)
|
||||
|
||||
if not qualified_stocks:
|
||||
print("No stocks found matching criteria.")
|
||||
return
|
||||
|
||||
print(f"\nFound {len(qualified_stocks)} stocks matching criteria")
|
||||
|
||||
# Initialize position calculator if portfolio size provided
|
||||
calculator = None
|
||||
if portfolio_size and portfolio_size > 0:
|
||||
calculator = PositionCalculator(
|
||||
account_size=portfolio_size,
|
||||
risk_percentage=1.0,
|
||||
stop_loss_percentage=7.0
|
||||
)
|
||||
|
||||
|
||||
entry_signals = []
|
||||
|
||||
for ticker, current_price, current_volume, last_update, stock_type in qualified_stocks:
|
||||
@ -107,28 +90,11 @@ def run_atr_ema_scanner_v2(min_price: float, max_price: float, min_volume: int,
|
||||
|
||||
signals = check_entry_signal(df)
|
||||
for signal, signal_date, signal_data in signals:
|
||||
entry_data = {
|
||||
'ticker': ticker,
|
||||
'entry_price': signal_data['price'],
|
||||
'target_price': signal_data['ema'],
|
||||
'volume': current_volume,
|
||||
'signal_date': signal_date,
|
||||
'stock_type': stock_type,
|
||||
'last_update': datetime.fromtimestamp(last_update/1000000000)
|
||||
}
|
||||
|
||||
if calculator:
|
||||
position = calculator.calculate_position_size(entry_data['entry_price'])
|
||||
potential_profit = (entry_data['target_price'] - entry_data['entry_price']) * position['shares']
|
||||
entry_data.update({
|
||||
'shares': position['shares'],
|
||||
'position_size': position['position_value'],
|
||||
'stop_loss': position['stop_loss'],
|
||||
'risk_amount': position['potential_loss'],
|
||||
'profit_amount': potential_profit,
|
||||
'risk_reward_ratio': abs(potential_profit / position['potential_loss']) if position['potential_loss'] != 0 else 0
|
||||
})
|
||||
|
||||
signal_data['date'] = signal_date
|
||||
entry_data = process_signal_data(
|
||||
ticker, signal_data, current_volume,
|
||||
last_update, stock_type, calculator
|
||||
)
|
||||
entry_signals.append(entry_data)
|
||||
print_signal(entry_data)
|
||||
|
||||
|
||||
@ -134,6 +134,83 @@ def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
||||
df_signals.to_csv(output_file, index=False)
|
||||
print(f"\nSaved {len(signals)} signals to {output_file}")
|
||||
|
||||
def initialize_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None) -> tuple:
|
||||
"""
|
||||
Initialize common scanner components
|
||||
|
||||
Args:
|
||||
min_price (float): Minimum stock price
|
||||
max_price (float): Maximum stock price
|
||||
min_volume (int): Minimum trading volume
|
||||
portfolio_size (float, optional): Portfolio size for position sizing
|
||||
|
||||
Returns:
|
||||
tuple: (interval, start_date, end_date, qualified_stocks, calculator)
|
||||
"""
|
||||
print(f"\nScanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}")
|
||||
|
||||
interval = get_interval_choice()
|
||||
start_date, end_date = get_date_range()
|
||||
|
||||
qualified_stocks = get_qualified_stocks(start_date, end_date, min_price, max_price, min_volume)
|
||||
|
||||
if not qualified_stocks:
|
||||
print("No stocks found matching criteria.")
|
||||
return None, None, None, None, None
|
||||
|
||||
print(f"\nFound {len(qualified_stocks)} stocks matching criteria")
|
||||
|
||||
# Initialize position calculator if portfolio size provided
|
||||
calculator = None
|
||||
if portfolio_size and portfolio_size > 0:
|
||||
calculator = PositionCalculator(
|
||||
account_size=portfolio_size,
|
||||
risk_percentage=1.0,
|
||||
stop_loss_percentage=7.0
|
||||
)
|
||||
|
||||
return interval, start_date, end_date, qualified_stocks, calculator
|
||||
|
||||
def process_signal_data(ticker: str, signal_data: dict, current_volume: int,
|
||||
last_update: int, stock_type: str, calculator: PositionCalculator = None) -> dict:
|
||||
"""
|
||||
Process and format signal data consistently
|
||||
|
||||
Args:
|
||||
ticker (str): Stock ticker
|
||||
signal_data (dict): Raw signal data
|
||||
current_volume (int): Current trading volume
|
||||
last_update (int): Last update timestamp
|
||||
stock_type (str): Stock type/label
|
||||
calculator (PositionCalculator, optional): Position calculator instance
|
||||
|
||||
Returns:
|
||||
dict: Processed signal data
|
||||
"""
|
||||
entry_data = {
|
||||
'ticker': ticker,
|
||||
'entry_price': signal_data['price'],
|
||||
'target_price': signal_data.get('ema', signal_data.get('upper_band')), # Handle both ATR and Sunny
|
||||
'volume': current_volume,
|
||||
'signal_date': signal_data.get('date', datetime.now()),
|
||||
'stock_type': stock_type,
|
||||
'last_update': datetime.fromtimestamp(last_update/1000000000)
|
||||
}
|
||||
|
||||
if calculator:
|
||||
position = calculator.calculate_position_size(entry_data['entry_price'])
|
||||
potential_profit = (entry_data['target_price'] - entry_data['entry_price']) * position['shares']
|
||||
entry_data.update({
|
||||
'shares': position['shares'],
|
||||
'position_size': position['position_value'],
|
||||
'stop_loss': position['stop_loss'],
|
||||
'risk_amount': position['potential_loss'],
|
||||
'profit_amount': potential_profit,
|
||||
'risk_reward_ratio': abs(potential_profit / position['potential_loss']) if position['potential_loss'] != 0 else 0
|
||||
})
|
||||
|
||||
return entry_data
|
||||
|
||||
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
|
||||
"""
|
||||
Fetch and resample stock data based on the chosen interval
|
||||
|
||||
Loading…
Reference in New Issue
Block a user