refactor: Optimize sunny scanner with direct database query and simplified processing
This commit is contained in:
parent
e7a32dd9ab
commit
7faf56a712
@ -277,81 +277,91 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
|
|||||||
interval = get_interval_choice()
|
interval = get_interval_choice()
|
||||||
end_date = datetime.now()
|
end_date = datetime.now()
|
||||||
start_date = end_date - timedelta(days=1)
|
start_date = end_date - timedelta(days=1)
|
||||||
lookback_start = end_date - timedelta(days=60)
|
|
||||||
|
|
||||||
tickers = get_valid_tickers(min_price, max_price, min_volume, interval)
|
# First get the data from database
|
||||||
if not tickers:
|
client = create_client()
|
||||||
print("No stocks found matching criteria.")
|
|
||||||
return
|
|
||||||
|
|
||||||
print(f"\nScanning {len(tickers)} qualified stocks...")
|
# Query to get stocks meeting criteria
|
||||||
|
query = f"""
|
||||||
|
SELECT DISTINCT ticker, close
|
||||||
|
FROM stock_db.stock_prices_daily
|
||||||
|
WHERE date = (SELECT max(date) FROM stock_db.stock_prices_daily)
|
||||||
|
AND close BETWEEN {min_price} AND {max_price}
|
||||||
|
AND volume >= {min_volume}
|
||||||
|
ORDER BY ticker
|
||||||
|
"""
|
||||||
|
|
||||||
sunny = SunnyBands()
|
try:
|
||||||
calculator = None
|
result = client.query(query)
|
||||||
if portfolio_size and portfolio_size > 0:
|
qualified_stocks = [(row[0], row[1]) for row in result.result_rows]
|
||||||
calculator = PositionCalculator(account_size=portfolio_size)
|
|
||||||
|
if not qualified_stocks:
|
||||||
bullish_signals = []
|
print("No stocks found matching criteria.")
|
||||||
bearish_signals = []
|
return
|
||||||
|
|
||||||
for ticker in tickers:
|
|
||||||
try:
|
|
||||||
df = get_stock_data(ticker, start_date, end_date, interval)
|
|
||||||
if df.empty or len(df) < 50:
|
|
||||||
continue
|
|
||||||
|
|
||||||
results = sunny.calculate(df)
|
|
||||||
last_day = df.iloc[-1]
|
|
||||||
|
|
||||||
if results['bullish_signal'].iloc[-1]:
|
print(f"\nFound {len(qualified_stocks)} stocks matching criteria")
|
||||||
entry_price = last_day['close']
|
|
||||||
dma = results['dma'].iloc[-1]
|
# Initialize indicators
|
||||||
upper_band = results['upper_band'].iloc[-1]
|
sunny = SunnyBands()
|
||||||
band_range = upper_band - dma
|
calculator = None
|
||||||
target_price = upper_band + band_range
|
if portfolio_size and portfolio_size > 0:
|
||||||
|
calculator = PositionCalculator(account_size=portfolio_size)
|
||||||
|
|
||||||
|
bullish_signals = []
|
||||||
|
bearish_signals = []
|
||||||
|
|
||||||
|
# Process each qualified stock
|
||||||
|
for ticker, current_price in qualified_stocks:
|
||||||
|
try:
|
||||||
|
df = get_stock_data(ticker, start_date, end_date, interval)
|
||||||
|
if df.empty or len(df) < 50:
|
||||||
|
continue
|
||||||
|
|
||||||
|
results = sunny.calculate(df)
|
||||||
|
|
||||||
signal_data = {
|
if results['bullish_signal'].iloc[-1]:
|
||||||
'ticker': ticker,
|
target_price = results['upper_band'].iloc[-1]
|
||||||
'entry': entry_price,
|
|
||||||
'target': target_price
|
if calculator:
|
||||||
}
|
position = calculator.calculate_position_size(current_price, target_price)
|
||||||
|
if position['shares'] > 0:
|
||||||
|
signal_data = {
|
||||||
|
'ticker': ticker,
|
||||||
|
'entry': current_price,
|
||||||
|
'target': target_price,
|
||||||
|
'shares': position['shares'],
|
||||||
|
'position_size': position['position_value'],
|
||||||
|
'stop_loss': position['stop_loss'],
|
||||||
|
'risk': position['potential_loss'],
|
||||||
|
'reward': position['potential_profit'],
|
||||||
|
'r_r': position['risk_reward_ratio']
|
||||||
|
}
|
||||||
|
bullish_signals.append(signal_data)
|
||||||
|
print(f"\n🟢 {ticker} Entry: ${current_price:.2f} Target: ${target_price:.2f}")
|
||||||
|
print(f" Shares: {signal_data['shares']} | Risk: ${abs(signal_data['risk']):.2f} | "
|
||||||
|
f"Reward: ${signal_data['reward']:.2f} | R/R: {signal_data['r_r']:.2f}")
|
||||||
|
|
||||||
if calculator:
|
elif results['bearish_signal'].iloc[-1]:
|
||||||
position = calculator.calculate_position_size(entry_price, target_price)
|
bearish_signals.append({
|
||||||
signal_data.update({
|
'ticker': ticker,
|
||||||
'shares': position['shares'],
|
'price': current_price
|
||||||
'position_size': position['position_value'],
|
|
||||||
'stop_loss': position['stop_loss'],
|
|
||||||
'risk': position['potential_loss'],
|
|
||||||
'reward': position['potential_profit'],
|
|
||||||
'r_r': position['risk_reward_ratio']
|
|
||||||
})
|
})
|
||||||
|
print(f"\n🔴 {ticker} at ${current_price:.2f}")
|
||||||
bullish_signals.append(signal_data)
|
|
||||||
print(f"\n🟢 {ticker} Entry: ${entry_price:.2f} Target: ${target_price:.2f}")
|
except Exception as e:
|
||||||
if calculator:
|
continue
|
||||||
print(f" Shares: {signal_data['shares']} | Risk: ${abs(signal_data['risk']):.2f} | "
|
|
||||||
f"Reward: ${signal_data['reward']:.2f} | R/R: {signal_data['r_r']:.2f}")
|
# Save results
|
||||||
|
output_date = datetime.now().strftime("%Y%m%d")
|
||||||
elif results['bearish_signal'].iloc[-1]:
|
if bullish_signals:
|
||||||
bearish_signals.append({
|
df_bullish = pd.DataFrame(bullish_signals)
|
||||||
'ticker': ticker,
|
df_bullish.to_csv(f'reports/sunny_bullish_{output_date}.csv', index=False)
|
||||||
'price': last_day['close']
|
|
||||||
})
|
if bearish_signals:
|
||||||
print(f"\n🔴 {ticker} at ${last_day['close']:.2f}")
|
df_bearish = pd.DataFrame(bearish_signals)
|
||||||
|
df_bearish.to_csv(f'reports/sunny_bearish_{output_date}.csv', index=False)
|
||||||
except Exception as e:
|
|
||||||
continue
|
print(f"\nFound {len(bullish_signals)} bullish and {len(bearish_signals)} bearish signals")
|
||||||
|
|
||||||
# Save results more concisely
|
except Exception as e:
|
||||||
output_date = datetime.now().strftime("%Y%m%d")
|
print(f"Error during scan: {str(e)}")
|
||||||
if bullish_signals:
|
|
||||||
df_bullish = pd.DataFrame(bullish_signals)
|
|
||||||
df_bullish.to_csv(f'reports/sunny_bullish_{output_date}.csv', index=False)
|
|
||||||
|
|
||||||
if bearish_signals:
|
|
||||||
df_bearish = pd.DataFrame(bearish_signals)
|
|
||||||
df_bearish.to_csv(f'reports/sunny_bearish_{output_date}.csv', index=False)
|
|
||||||
|
|
||||||
print(f"\nFound {len(bullish_signals)} bullish and {len(bearish_signals)} bearish signals")
|
|
||||||
print("Results saved to reports directory")
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user