feat: Add ATR EMA target scanner for stock analysis

This commit is contained in:
Bobby 2025-02-08 10:53:21 -08:00 committed by Bobby (aider)
parent 389975605c
commit 86686125f3

View File

@ -0,0 +1,126 @@
import os
import pandas as pd
from datetime import datetime, timedelta
from db.db_connection import create_client
from indicators.three_atr_ema import ThreeATREMAIndicator
from trading.position_calculator import PositionCalculator
from screener.t_sunnyband import get_stock_data
def run_atr_ema_target_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None):
print(f"\n🔍 Scanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}")
# Set time range
end_date = datetime.now()
start_date = end_date - timedelta(days=1) # Last trading day
start_ts = int(start_date.timestamp() * 1000000000)
end_ts = int(end_date.timestamp() * 1000000000)
client = create_client()
try:
# Fetch stock prices within the defined range
query = f"""
WITH latest_data AS (
SELECT
ticker,
argMax(close, window_start) AS last_close,
sum(volume) AS total_volume,
max(window_start) AS last_update
FROM stock_db.stock_prices
WHERE window_start BETWEEN {start_ts} AND {end_ts}
GROUP BY ticker
HAVING last_close BETWEEN {min_price} AND {max_price}
AND total_volume >= {min_volume}
)
SELECT
ticker,
last_close,
total_volume,
last_update
FROM latest_data
ORDER BY ticker
"""
result = client.query(query)
stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
if not stocks:
print("❌ No stocks found matching criteria.")
return
print(f"\n✅ Found {len(stocks)} stocks matching criteria")
indicator = ThreeATREMAIndicator()
calculator = PositionCalculator(portfolio_size, risk_percentage=1.0, stop_loss_percentage=7.0) if portfolio_size else None
bullish_signals = []
for ticker, current_price, current_volume, last_update in stocks:
try:
df = get_stock_data(ticker, start_date, end_date, "1D")
if df.empty or len(df) < 50:
continue
results = indicator.calculate(df)
last_row = results.iloc[-1]
prev_row = results.iloc[-2]
# Check if entry condition is met
bullish_entry = (
last_row['close'] < last_row['ema'] and
prev_row['close'] <= prev_row['lower_band'] and
last_row['close'] > prev_row['close']
)
if bullish_entry:
entry_price = last_row['close']
target_1 = entry_price * 1.10 # 10% profit
target_2 = entry_price * 1.20 # 20% profit
# Trailing stop logic
trail_stop = None
trail_active = False
if last_row['close'] >= last_row['upper_band']:
trail_active = True
highest_price = max(results['high'].iloc[-5:]) # Last 5 days
trail_stop = highest_price * 0.98 # 2% below high
# Position sizing
position = calculator.calculate_position_size(entry_price, target_2) if calculator else None
position_size = position['position_value'] if position else None
# Save signal
signal_data = {
'ticker': ticker,
'entry_price': entry_price,
'target_1': target_1,
'target_2': target_2,
'volume': current_volume,
'last_update': datetime.fromtimestamp(last_update / 1000000000),
'trail_stop': trail_stop,
'position_size': position_size
}
bullish_signals.append(signal_data)
# Print result
print(f"\n🟢 {ticker} @ ${entry_price:.2f}")
print(f" 🎯 Target 1: ${target_1:.2f} | Target 2: ${target_2:.2f}")
if trail_active:
print(f" 🚨 Trailing Stop: ${trail_stop:.2f}")
except Exception as e:
print(f"❌ Error processing {ticker}: {e}")
continue
# Save results
if bullish_signals:
output_dir = 'reports'
os.makedirs(output_dir, exist_ok=True)
output_file = f'{output_dir}/atr_ema_targets_{datetime.now().strftime("%Y%m%d_%H%M")}.csv'
pd.DataFrame(bullish_signals).to_csv(output_file, index=False)
print(f"\n📁 Saved bullish signals to {output_file}")
else:
print("❌ No bullish signals found.")
except Exception as e:
print(f"❌ Error during scan: {e}")