feat: Enhance stock screening with daily data filtering and intraday validation

This commit is contained in:
Bobby Abellana (aider) 2025-02-06 22:13:19 -08:00
parent 4f6b811666
commit ccf6671f4b
No known key found for this signature in database
GPG Key ID: 647714CC45F3647B

View File

@ -31,7 +31,6 @@ def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interv
"""Fetch stock data from the database""" """Fetch stock data from the database"""
client = create_client() client = create_client()
# Select appropriate table based on interval
if interval == "daily": if interval == "daily":
table = "stock_prices_daily" table = "stock_prices_daily"
date_col = "date" date_col = "date"
@ -59,19 +58,20 @@ def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interv
} }
minutes = minutes_map[interval] minutes = minutes_map[interval]
# Get 5-minute bars and resample them to the desired interval
query = f""" query = f"""
SELECT SELECT
fromUnixTimestamp({date_col}) as date, fromUnixTimestamp(intDiv({date_col}, 300) * 300) as interval_start,
open, min(open) as open,
high, max(high) as high,
low, min(low) as low,
close, argMax(close, {date_col}) as close,
volume sum(volume) as volume
FROM stock_db.{table} FROM stock_db.{table}
WHERE ticker = '{ticker}' WHERE ticker = '{ticker}'
AND {date_col} BETWEEN toUnixTimestamp('{start_date.date()}') AND toUnixTimestamp('{end_date.date()}') AND {date_col} BETWEEN toUnixTimestamp('{start_date.date()}') AND toUnixTimestamp('{end_date.date()}')
AND (toMinute(fromUnixTimestamp({date_col})) % {minutes}) = 0 GROUP BY interval_start
ORDER BY date ASC ORDER BY interval_start ASC
""" """
try: try:
@ -84,6 +84,23 @@ def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interv
result.result_rows, result.result_rows,
columns=['date', 'open', 'high', 'low', 'close', 'volume'] columns=['date', 'open', 'high', 'low', 'close', 'volume']
) )
if interval != "daily" and interval != "5min":
# Resample to desired interval
df.set_index('date', inplace=True)
minutes = minutes_map[interval]
rule = f'{minutes}T'
df = df.resample(rule).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
df.reset_index(inplace=True)
return df return df
except Exception as e: except Exception as e:
print(f"Error fetching data for {ticker}: {str(e)}") print(f"Error fetching data for {ticker}: {str(e)}")
@ -93,34 +110,43 @@ def get_valid_tickers(min_price: float, max_price: float, min_volume: int, inter
"""Get tickers that meet the price and volume criteria""" """Get tickers that meet the price and volume criteria"""
client = create_client() client = create_client()
yesterday = (datetime.now() - timedelta(days=1)).date() yesterday = (datetime.now() - timedelta(days=1)).date()
today = datetime.now().date()
if interval == "daily": # First get valid tickers from daily data
table = "stock_prices_daily" daily_query = f"""
date_col = "date"
date_condition = f"{date_col} = '{yesterday}'"
else:
table = "stock_prices"
date_col = "window_start"
# Get today's trading hours timestamp range (9:30 AM to 4:00 PM EST)
market_open = int(datetime.combine(today, datetime.strptime("09:30", "%H:%M").time()).timestamp())
market_close = int(datetime.combine(today, datetime.strptime("16:00", "%H:%M").time()).timestamp())
date_condition = f"{date_col} BETWEEN {market_open} AND {market_close}"
query = f"""
SELECT DISTINCT ticker SELECT DISTINCT ticker
FROM stock_db.{table} FROM stock_db.stock_prices_daily
WHERE {date_condition} WHERE date = '{yesterday}'
AND close BETWEEN {min_price} AND {max_price} AND close BETWEEN {min_price} AND {max_price}
AND volume >= {min_volume} AND volume >= {min_volume}
ORDER BY ticker ASC ORDER BY ticker ASC
""" """
try: try:
result = client.query(query) result = client.query(daily_query)
tickers = [row[0] for row in result.result_rows] tickers = [row[0] for row in result.result_rows]
print(f"Found {len(tickers)} stocks matching price and volume criteria") print(f"\nFound {len(tickers)} stocks matching price and volume criteria")
if interval != "daily":
# Now verify these tickers have intraday data today
today = datetime.now().date()
market_open = int(datetime.combine(today, datetime.strptime("09:30", "%H:%M").time()).timestamp())
market_close = int(datetime.combine(today, datetime.strptime("16:00", "%H:%M").time()).timestamp())
intraday_query = f"""
SELECT DISTINCT ticker
FROM stock_db.stock_prices
WHERE ticker IN ({','.join([f"'{t}'" for t in tickers])})
AND window_start BETWEEN {market_open} AND {market_close}
GROUP BY ticker
HAVING count() >= 10 -- Ensure we have enough data points
"""
result = client.query(intraday_query)
tickers = [row[0] for row in result.result_rows]
print(f"Of those, {len(tickers)} have recent intraday data")
return tickers return tickers
except Exception as e: except Exception as e:
print(f"Error fetching tickers: {str(e)}") print(f"Error fetching tickers: {str(e)}")
return [] return []