feat: Add time interval resampling to stock data fetching
This commit is contained in:
parent
7e046a1e33
commit
cea43c4d32
@ -61,30 +61,24 @@ def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
|||||||
|
|
||||||
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
|
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
|
||||||
"""
|
"""
|
||||||
Fetch stock data from the database with enhanced fallback logic
|
Fetch and resample stock data based on the chosen interval
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
ticker (str): Stock ticker symbol
|
ticker (str): Stock ticker symbol
|
||||||
start_date (datetime): Start date for data fetch
|
start_date (datetime): Start date for data fetch
|
||||||
end_date (datetime): End date for data fetch
|
end_date (datetime): End date for data fetch
|
||||||
interval (str): Time interval for data ('daily', '5min', etc.)
|
interval (str): Time interval for data ('daily', '5min', '15min', '30min', '1hour')
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
pd.DataFrame: DataFrame with OHLCV data
|
pd.DataFrame: Resampled DataFrame with OHLCV data
|
||||||
"""
|
"""
|
||||||
try:
|
try:
|
||||||
client = create_client()
|
client = create_client()
|
||||||
|
|
||||||
# Expand window to 90 days for more data robustness
|
# Expand window to get enough data for calculations
|
||||||
start_date = start_date - timedelta(days=90)
|
start_date = start_date - timedelta(days=90)
|
||||||
|
|
||||||
# First try primary data source
|
# Base query to get raw data at finest granularity
|
||||||
if interval == "daily":
|
|
||||||
table = "stock_prices_daily"
|
|
||||||
else:
|
|
||||||
table = "stock_prices"
|
|
||||||
|
|
||||||
# Unified query format
|
|
||||||
query = f"""
|
query = f"""
|
||||||
SELECT
|
SELECT
|
||||||
toDateTime(window_start/1000000000) as date,
|
toDateTime(window_start/1000000000) as date,
|
||||||
@ -104,50 +98,10 @@ def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interv
|
|||||||
|
|
||||||
result = client.query(query)
|
result = client.query(query)
|
||||||
|
|
||||||
# Fallback to intraday data if needed
|
|
||||||
if not result.result_rows and interval == "daily":
|
|
||||||
print(f"⚠️ No daily data for {ticker}, resampling from intraday data")
|
|
||||||
intraday_query = f"""
|
|
||||||
SELECT
|
|
||||||
toDateTime(window_start/1000000000) as date,
|
|
||||||
first_value(open) AS open,
|
|
||||||
max(high) AS high,
|
|
||||||
min(low) AS low,
|
|
||||||
last_value(close) AS close,
|
|
||||||
sum(volume) AS volume
|
|
||||||
FROM stock_db.stock_prices
|
|
||||||
WHERE ticker = '{ticker}'
|
|
||||||
AND window_start BETWEEN
|
|
||||||
{int(start_date.timestamp() * 1e9)} AND
|
|
||||||
{int(end_date.timestamp() * 1e9)}
|
|
||||||
AND toYear(toDateTime(window_start/1000000000)) <= toYear(now())
|
|
||||||
AND toYear(toDateTime(window_start/1000000000)) >= (toYear(now()) - 1)
|
|
||||||
GROUP BY date
|
|
||||||
ORDER BY date ASC
|
|
||||||
"""
|
|
||||||
result = client.query(intraday_query)
|
|
||||||
|
|
||||||
# Fallback to different intervals if still empty
|
|
||||||
if not result.result_rows:
|
|
||||||
print(f"⚠️ No {interval} data for {ticker}, trying weekly")
|
|
||||||
weekly_query = f"""
|
|
||||||
SELECT
|
|
||||||
toStartOfWeek(window_start) AS date,
|
|
||||||
first_value(open) AS open,
|
|
||||||
max(high) AS high,
|
|
||||||
min(low) AS low,
|
|
||||||
last_value(close) AS close,
|
|
||||||
sum(volume) AS volume
|
|
||||||
FROM stock_db.stock_prices
|
|
||||||
WHERE ticker = '{ticker}'
|
|
||||||
GROUP BY date
|
|
||||||
ORDER BY date ASC
|
|
||||||
"""
|
|
||||||
result = client.query(weekly_query)
|
|
||||||
|
|
||||||
if not result.result_rows:
|
if not result.result_rows:
|
||||||
return pd.DataFrame()
|
return pd.DataFrame()
|
||||||
|
|
||||||
|
# Create base DataFrame
|
||||||
df = pd.DataFrame(
|
df = pd.DataFrame(
|
||||||
result.result_rows,
|
result.result_rows,
|
||||||
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
||||||
@ -158,18 +112,50 @@ def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interv
|
|||||||
for col in numeric_columns:
|
for col in numeric_columns:
|
||||||
df[col] = pd.to_numeric(df[col], errors='coerce')
|
df[col] = pd.to_numeric(df[col], errors='coerce')
|
||||||
|
|
||||||
|
# Convert date column
|
||||||
|
df['date'] = pd.to_datetime(df['date'])
|
||||||
|
|
||||||
|
# Set date as index for resampling
|
||||||
|
df.set_index('date', inplace=True)
|
||||||
|
|
||||||
|
# Resample based on interval
|
||||||
|
if interval == 'daily':
|
||||||
|
rule = '1D'
|
||||||
|
elif interval == '5min':
|
||||||
|
rule = '5T'
|
||||||
|
elif interval == '15min':
|
||||||
|
rule = '15T'
|
||||||
|
elif interval == '30min':
|
||||||
|
rule = '30T'
|
||||||
|
elif interval == '1hour':
|
||||||
|
rule = '1H'
|
||||||
|
else:
|
||||||
|
rule = '1D' # Default to daily
|
||||||
|
|
||||||
|
resampled = df.resample(rule).agg({
|
||||||
|
'open': 'first',
|
||||||
|
'high': 'max',
|
||||||
|
'low': 'min',
|
||||||
|
'close': 'last',
|
||||||
|
'volume': 'sum'
|
||||||
|
}).dropna()
|
||||||
|
|
||||||
|
# Reset index to get date as column
|
||||||
|
resampled.reset_index(inplace=True)
|
||||||
|
|
||||||
|
# Filter to requested date range
|
||||||
|
mask = (resampled['date'] >= start_date + timedelta(days=89)) & (resampled['date'] <= end_date)
|
||||||
|
resampled = resampled.loc[mask]
|
||||||
|
|
||||||
# Handle null values
|
# Handle null values
|
||||||
if df['close'].isnull().any():
|
if resampled['close'].isnull().any():
|
||||||
print(f"Warning: Found null values in close prices")
|
print(f"Warning: Found null values in close prices")
|
||||||
df = df.dropna(subset=['close'])
|
resampled = resampled.dropna(subset=['close'])
|
||||||
|
|
||||||
if df.empty or 'close' not in df.columns:
|
if resampled.empty or 'close' not in resampled.columns:
|
||||||
return pd.DataFrame()
|
return pd.DataFrame()
|
||||||
|
|
||||||
if df['date'].dtype == object:
|
return resampled
|
||||||
df['date'] = pd.to_datetime(df['date'])
|
|
||||||
|
|
||||||
return df
|
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error fetching {ticker} data: {str(e)}")
|
print(f"Error fetching {ticker} data: {str(e)}")
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user