refactor: Update sunny scanner to use intraday stock_prices table

This commit is contained in:
Bobby Abellana (aider) 2025-02-07 00:28:58 -08:00 committed by Bobby Abellana
parent 7faf56a712
commit d0583ddcc3
No known key found for this signature in database
GPG Key ID: 647714CC45F3647B

View File

@ -1,4 +1,5 @@
import os
import os
import numpy as np
from datetime import datetime, timedelta
import pandas as pd
@ -276,24 +277,41 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
interval = get_interval_choice()
end_date = datetime.now()
start_date = end_date - timedelta(days=1)
start_date = end_date - timedelta(days=1) # Get last trading day
# First get the data from database
# First get qualified stocks from database
client = create_client()
# Query to get stocks meeting criteria
# Convert dates to Unix timestamp in nanoseconds
end_ts = int(end_date.timestamp() * 1000000000)
start_ts = int(start_date.timestamp() * 1000000000)
# Query to get stocks meeting criteria with their latest data
query = f"""
SELECT DISTINCT ticker, close
FROM stock_db.stock_prices_daily
WHERE date = (SELECT max(date) FROM stock_db.stock_prices_daily)
AND close BETWEEN {min_price} AND {max_price}
AND volume >= {min_volume}
WITH latest_data AS (
SELECT
ticker,
argMax(close, window_start) as last_close,
sum(volume) as total_volume,
max(window_start) as last_update
FROM stock_db.stock_prices
WHERE window_start BETWEEN {start_ts} AND {end_ts}
GROUP BY ticker
HAVING last_close BETWEEN {min_price} AND {max_price}
AND total_volume >= {min_volume}
)
SELECT
ticker,
last_close,
total_volume,
last_update
FROM latest_data
ORDER BY ticker
"""
try:
result = client.query(query)
qualified_stocks = [(row[0], row[1]) for row in result.result_rows]
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
if not qualified_stocks:
print("No stocks found matching criteria.")
@ -311,14 +329,18 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
bearish_signals = []
# Process each qualified stock
for ticker, current_price in qualified_stocks:
for ticker, current_price, current_volume, last_update in qualified_stocks:
try:
# Get historical data based on interval
df = get_stock_data(ticker, start_date, end_date, interval)
if df.empty or len(df) < 50:
if df.empty or len(df) < 50: # Need at least 50 bars for the indicator
continue
# Calculate SunnyBands
results = sunny.calculate(df)
# Check for signals
if results['bullish_signal'].iloc[-1]:
target_price = results['upper_band'].iloc[-1]
@ -329,6 +351,8 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
'ticker': ticker,
'entry': current_price,
'target': target_price,
'volume': current_volume,
'last_update': datetime.fromtimestamp(last_update/1000000000),
'shares': position['shares'],
'position_size': position['position_value'],
'stop_loss': position['stop_loss'],
@ -344,22 +368,32 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
elif results['bearish_signal'].iloc[-1]:
bearish_signals.append({
'ticker': ticker,
'price': current_price
'price': current_price,
'volume': current_volume,
'last_update': datetime.fromtimestamp(last_update/1000000000)
})
print(f"\n🔴 {ticker} at ${current_price:.2f}")
except Exception as e:
print(f"Error processing {ticker}: {str(e)}")
continue
# Save results
output_date = datetime.now().strftime("%Y%m%d")
output_dir = 'reports'
os.makedirs(output_dir, exist_ok=True)
output_date = datetime.now().strftime("%Y%m%d_%H%M")
if bullish_signals:
df_bullish = pd.DataFrame(bullish_signals)
df_bullish.to_csv(f'reports/sunny_bullish_{output_date}.csv', index=False)
output_file = f'{output_dir}/sunny_bullish_{output_date}.csv'
df_bullish.to_csv(output_file, index=False)
print(f"\nSaved bullish signals to {output_file}")
if bearish_signals:
df_bearish = pd.DataFrame(bearish_signals)
df_bearish.to_csv(f'reports/sunny_bearish_{output_date}.csv', index=False)
output_file = f'{output_dir}/sunny_bearish_{output_date}.csv'
df_bearish.to_csv(output_file, index=False)
print(f"\nSaved bearish signals to {output_file}")
print(f"\nFound {len(bullish_signals)} bullish and {len(bearish_signals)} bearish signals")