refactor: Update sunny scanner to use intraday stock_prices table
This commit is contained in:
parent
7faf56a712
commit
d0583ddcc3
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import os
|
||||
import numpy as np
|
||||
from datetime import datetime, timedelta
|
||||
import pandas as pd
|
||||
@ -276,24 +277,41 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
|
||||
|
||||
interval = get_interval_choice()
|
||||
end_date = datetime.now()
|
||||
start_date = end_date - timedelta(days=1)
|
||||
start_date = end_date - timedelta(days=1) # Get last trading day
|
||||
|
||||
# First get the data from database
|
||||
# First get qualified stocks from database
|
||||
client = create_client()
|
||||
|
||||
# Query to get stocks meeting criteria
|
||||
# Convert dates to Unix timestamp in nanoseconds
|
||||
end_ts = int(end_date.timestamp() * 1000000000)
|
||||
start_ts = int(start_date.timestamp() * 1000000000)
|
||||
|
||||
# Query to get stocks meeting criteria with their latest data
|
||||
query = f"""
|
||||
SELECT DISTINCT ticker, close
|
||||
FROM stock_db.stock_prices_daily
|
||||
WHERE date = (SELECT max(date) FROM stock_db.stock_prices_daily)
|
||||
AND close BETWEEN {min_price} AND {max_price}
|
||||
AND volume >= {min_volume}
|
||||
WITH latest_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
argMax(close, window_start) as last_close,
|
||||
sum(volume) as total_volume,
|
||||
max(window_start) as last_update
|
||||
FROM stock_db.stock_prices
|
||||
WHERE window_start BETWEEN {start_ts} AND {end_ts}
|
||||
GROUP BY ticker
|
||||
HAVING last_close BETWEEN {min_price} AND {max_price}
|
||||
AND total_volume >= {min_volume}
|
||||
)
|
||||
SELECT
|
||||
ticker,
|
||||
last_close,
|
||||
total_volume,
|
||||
last_update
|
||||
FROM latest_data
|
||||
ORDER BY ticker
|
||||
"""
|
||||
|
||||
try:
|
||||
result = client.query(query)
|
||||
qualified_stocks = [(row[0], row[1]) for row in result.result_rows]
|
||||
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
|
||||
|
||||
if not qualified_stocks:
|
||||
print("No stocks found matching criteria.")
|
||||
@ -311,14 +329,18 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
|
||||
bearish_signals = []
|
||||
|
||||
# Process each qualified stock
|
||||
for ticker, current_price in qualified_stocks:
|
||||
for ticker, current_price, current_volume, last_update in qualified_stocks:
|
||||
try:
|
||||
# Get historical data based on interval
|
||||
df = get_stock_data(ticker, start_date, end_date, interval)
|
||||
if df.empty or len(df) < 50:
|
||||
|
||||
if df.empty or len(df) < 50: # Need at least 50 bars for the indicator
|
||||
continue
|
||||
|
||||
# Calculate SunnyBands
|
||||
results = sunny.calculate(df)
|
||||
|
||||
# Check for signals
|
||||
if results['bullish_signal'].iloc[-1]:
|
||||
target_price = results['upper_band'].iloc[-1]
|
||||
|
||||
@ -329,6 +351,8 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
|
||||
'ticker': ticker,
|
||||
'entry': current_price,
|
||||
'target': target_price,
|
||||
'volume': current_volume,
|
||||
'last_update': datetime.fromtimestamp(last_update/1000000000),
|
||||
'shares': position['shares'],
|
||||
'position_size': position['position_value'],
|
||||
'stop_loss': position['stop_loss'],
|
||||
@ -344,22 +368,32 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
|
||||
elif results['bearish_signal'].iloc[-1]:
|
||||
bearish_signals.append({
|
||||
'ticker': ticker,
|
||||
'price': current_price
|
||||
'price': current_price,
|
||||
'volume': current_volume,
|
||||
'last_update': datetime.fromtimestamp(last_update/1000000000)
|
||||
})
|
||||
print(f"\n🔴 {ticker} at ${current_price:.2f}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {ticker}: {str(e)}")
|
||||
continue
|
||||
|
||||
# Save results
|
||||
output_date = datetime.now().strftime("%Y%m%d")
|
||||
output_dir = 'reports'
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_date = datetime.now().strftime("%Y%m%d_%H%M")
|
||||
|
||||
if bullish_signals:
|
||||
df_bullish = pd.DataFrame(bullish_signals)
|
||||
df_bullish.to_csv(f'reports/sunny_bullish_{output_date}.csv', index=False)
|
||||
output_file = f'{output_dir}/sunny_bullish_{output_date}.csv'
|
||||
df_bullish.to_csv(output_file, index=False)
|
||||
print(f"\nSaved bullish signals to {output_file}")
|
||||
|
||||
if bearish_signals:
|
||||
df_bearish = pd.DataFrame(bearish_signals)
|
||||
df_bearish.to_csv(f'reports/sunny_bearish_{output_date}.csv', index=False)
|
||||
output_file = f'{output_dir}/sunny_bearish_{output_date}.csv'
|
||||
df_bearish.to_csv(output_file, index=False)
|
||||
print(f"\nSaved bearish signals to {output_file}")
|
||||
|
||||
print(f"\nFound {len(bullish_signals)} bullish and {len(bearish_signals)} bearish signals")
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user