import pandas as pd from datetime import datetime, timedelta import talib from db.db_connection import create_client from utils.data_utils import ( get_stock_data, validate_signal_date, print_signal, save_signals_to_csv, get_qualified_stocks ) from utils.scanner_utils import initialize_scanner, process_signal_data from trading.position_calculator import PositionCalculator # Dictionary mapping pattern names to their functions and descriptions CANDLESTICK_PATTERNS = { 'BULLISH_ENGULFING': { 'function': talib.CDLENGULFING, 'description': 'Bullish Engulfing Pattern' }, 'HAMMER': { 'function': talib.CDLHAMMER, 'description': 'Hammer Pattern' }, 'MORNING_STAR': { 'function': talib.CDLMORNINGSTAR, 'description': 'Morning Star Pattern' }, 'PIERCING_LINE': { 'function': talib.CDLPIERCING, 'description': 'Piercing Line Pattern' }, 'THREE_WHITE_SOLDIERS': { 'function': talib.CDL3WHITESOLDIERS, 'description': 'Three White Soldiers Pattern' } } def check_entry_signal(df: pd.DataFrame, selected_patterns: list = None) -> list: """ Check for bullish candlestick patterns across the entire date range Args: df (pd.DataFrame): DataFrame with OHLCV data selected_patterns (list): List of patterns to scan for Returns: list: List of tuples (signal, date, signal_data) for each signal found """ if len(df) < 14: # Need at least 14 bars for ATR calculation return [] signals = [] # Calculate ATR first atr = talib.ATR(df['high'].values, df['low'].values, df['close'].values, timeperiod=14) # Use selected patterns or all patterns if none selected patterns_to_scan = {k: v for k, v in CANDLESTICK_PATTERNS.items() if selected_patterns is None or k in selected_patterns} # Calculate patterns pattern_signals = {} for pattern_name, pattern_info in patterns_to_scan.items(): pattern_signals[pattern_name] = pattern_info['function']( df['open'].values, df['high'].values, df['low'].values, df['close'].values ) # Look for signals across all candles for i in range(14, len(df)): # Start after ATR lookback period found_patterns = [] for pattern_name, pattern_values in pattern_signals.items(): # Check if we have a bullish signal (value > 0) if pattern_values[i] > 0: found_patterns.append(CANDLESTICK_PATTERNS[pattern_name]['description']) if found_patterns: # Calculate basic target and stop levels using recent price action current_price = df.iloc[i]['close'] recent_low = df.iloc[max(0, i-5):i+1]['low'].min() # Look back 5 bars for stop # Default to percentage-based calculations atr_value = atr[i] if pd.isna(atr_value): target_price = current_price * 1.02 # 2% target stop_loss = current_price * 0.99 # 1% stop else: target_price = current_price + (2 * atr_value) stop_loss = max(recent_low, current_price - atr_value) signal_data = { 'price': current_price, 'patterns': ', '.join(found_patterns), 'pattern_count': len(found_patterns), 'target_price': target_price, 'stop_loss': stop_loss } signals.append((True, df.iloc[i]['date'], signal_data)) return signals def run_candlestick_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None, interval: str = "1d", start_date: datetime = None, end_date: datetime = None, selected_patterns: list = None) -> None: """ Run candlestick pattern scanner to find bullish patterns Args: min_price (float): Minimum stock price max_price (float): Maximum stock price min_volume (int): Minimum volume portfolio_size (float, optional): Portfolio size for position sizing interval (str, optional): Time interval for data. Defaults to "1d" start_date (datetime, optional): Start date for scanning end_date (datetime, optional): End date for scanning selected_patterns (list, optional): List of patterns to scan for """ try: # Initialize scanner components interval, start_date, end_date, qualified_stocks, calculator = initialize_scanner( min_price=min_price, max_price=max_price, min_volume=min_volume, portfolio_size=portfolio_size, interval=interval, start_date=start_date, end_date=end_date ) if not qualified_stocks: return bullish_signals = [] for ticker, current_price, current_volume, last_update, stock_type in qualified_stocks: try: df = get_stock_data(ticker, start_date, end_date, interval) if df.empty or len(df) < 5: # Need at least 5 bars continue signals = check_entry_signal(df, selected_patterns) # Pass selected_patterns here for signal, signal_date, signal_data in signals: signal_data['date'] = signal_date entry_data = process_signal_data( ticker, signal_data, current_volume, last_update, stock_type, calculator ) bullish_signals.append(entry_data) print_signal(entry_data, "🕯️") # Candlestick emoji except Exception as e: print(f"Error processing {ticker}: {str(e)}") continue save_signals_to_csv(bullish_signals, 'candlestick') return bullish_signals except Exception as e: print(f"Error during scan: {str(e)}") return []