from datetime import datetime, timedelta import pandas as pd from db.db_connection import create_client from indicators.sunny_bands import SunnyBands def get_stock_data(ticker: str, start_date: datetime, end_date: datetime) -> pd.DataFrame: """Fetch stock data from the database""" client = create_client() query = f""" SELECT date, open, high, low, close, volume FROM stock_db.stock_prices_daily WHERE ticker = '{ticker}' AND date BETWEEN '{start_date.date()}' AND '{end_date.date()}' ORDER BY date ASC """ try: result = client.query(query) if not result.result_rows: print(f"No data found for {ticker}") return pd.DataFrame() df = pd.DataFrame( result.result_rows, columns=['date', 'open', 'high', 'low', 'close', 'volume'] ) return df except Exception as e: print(f"Error fetching data for {ticker}: {str(e)}") return pd.DataFrame() def get_valid_tickers(min_price: float, max_price: float, min_volume: int) -> list: """Get tickers that meet the price and volume criteria""" client = create_client() yesterday = (datetime.now() - timedelta(days=1)).date() query = f""" SELECT DISTINCT ticker FROM stock_db.stock_prices_daily WHERE date = '{yesterday}' AND close BETWEEN {min_price} AND {max_price} AND volume >= {min_volume} """ result = client.query(query) return [row[0] for row in result.result_rows] def run_sunny_scanner(min_price: float, max_price: float, min_volume: int) -> None: """Run the SunnyBand scanner and save results""" print(f"\nInitializing scan for stocks between ${min_price:.2f} and ${max_price:.2f}") print(f"Minimum volume: {min_volume:,}") # Get date range (60 days of data for calculations) end_date = datetime.now() start_date = end_date - timedelta(days=60) # Get valid tickers print("\nFetching qualified stocks...") tickers = get_valid_tickers(min_price, max_price, min_volume) if not tickers: print("No stocks found matching your criteria.") return print(f"\nFound {len(tickers)} stocks to scan") print("Looking for SunnyBand crossovers...") print("This may take a few minutes...") # Initialize results lists bullish_signals = [] bearish_signals = [] errors = [] # Initialize SunnyBands indicator sunny = SunnyBands() # Track progress total = len(tickers) processed = 0 # Scan each ticker for ticker in tickers: processed += 1 if processed % 10 == 0: # Show progress every 10 stocks print(f"Progress: {processed}/{total} stocks processed ({(processed/total)*100:.1f}%)") try: # Get price data df = get_stock_data(ticker, start_date, end_date) if df.empty: continue if len(df) < 50: # Need enough data for the indicator continue # Calculate SunnyBands results = sunny.calculate(df) # Check last day's signals last_day = df.iloc[-1] if results['bullish_signal'].iloc[-1]: signal_data = { 'ticker': ticker, 'price': last_day['close'], 'volume': last_day['volume'], 'date': last_day['date'], 'dma': results['dma'].iloc[-1], 'lower_band': results['lower_band'].iloc[-1] } bullish_signals.append(signal_data) print(f"🟢 Bullish Signal: {ticker} at ${last_day['close']:.2f}") elif results['bearish_signal'].iloc[-1]: signal_data = { 'ticker': ticker, 'price': last_day['close'], 'volume': last_day['volume'], 'date': last_day['date'], 'dma': results['dma'].iloc[-1], 'upper_band': results['upper_band'].iloc[-1] } bearish_signals.append(signal_data) print(f"šŸ”“ Bearish Signal: {ticker} at ${last_day['close']:.2f}") except Exception as e: errors.append(f"{ticker}: {str(e)}") continue # Save and display results output_date = datetime.now().strftime("%Y%m%d") print(f"\nScan Complete! Processed {total} stocks.") if errors: print(f"\nEncountered {len(errors)} errors during scan:") for error in errors[:5]: # Show first 5 errors print(error) if len(errors) > 5: print(f"...and {len(errors) - 5} more errors") if bullish_signals: print(f"\n🟢 Found {len(bullish_signals)} Bullish Signals:") df_bullish = pd.DataFrame(bullish_signals) bullish_file = f'src/reports/sunny_bullish_{output_date}.csv' df_bullish.to_csv(bullish_file, index=False) print(f"Saved to {bullish_file}") for signal in bullish_signals: print(f"\n{signal['ticker']}:") print(f"Price: ${signal['price']:.2f}") print(f"Volume: {signal['volume']:,}") print(f"DMA: ${signal['dma']:.2f}") print(f"Lower Band: ${signal['lower_band']:.2f}") if bearish_signals: print(f"\nšŸ”“ Found {len(bearish_signals)} Bearish Signals:") df_bearish = pd.DataFrame(bearish_signals) bearish_file = f'src/reports/sunny_bearish_{output_date}.csv' df_bearish.to_csv(bearish_file, index=False) print(f"Saved to {bearish_file}") for signal in bearish_signals: print(f"\n{signal['ticker']}:") print(f"Price: ${signal['price']:.2f}") print(f"Volume: {signal['volume']:,}") print(f"DMA: ${signal['dma']:.2f}") print(f"Upper Band: ${signal['upper_band']:.2f}") if not bullish_signals and not bearish_signals: print("\nNo signals found for today.")