import os import os import numpy as np from datetime import datetime, timedelta import pandas as pd from db.db_connection import create_client from indicators.sunny_bands import SunnyBands from trading.position_calculator import PositionCalculator def get_interval_choice() -> str: """Get user's preferred time interval""" print("\nSelect Time Interval:") print("1. Daily") print("2. 5 minute") print("3. 15 minute") print("4. 30 minute") print("5. 1 hour") while True: choice = input("\nEnter your choice (1-5): ") if choice == "1": return "daily" elif choice == "2": return "5min" elif choice == "3": return "15min" elif choice == "4": return "30min" elif choice == "5": return "1hour" else: print("Invalid choice. Please try again.") def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame: """Fetch stock data from the database""" try: client = create_client() # Calculate proper date range (looking back from today) end_date = datetime.now() start_date = end_date - timedelta(days=60) # 60 days of history if interval == "daily": table = "stock_prices_daily" date_col = "date" query = f""" SELECT {date_col} as date, open, high, low, close, volume FROM stock_db.{table} WHERE ticker = '{ticker}' AND {date_col} BETWEEN '{start_date.date()}' AND '{end_date.date()}' ORDER BY date ASC """ else: table = "stock_prices" date_col = "window_start" minutes_map = { "5min": 5, "15min": 15, "30min": 30, "1hour": 60 } minutes = minutes_map[interval] # Get 5-minute bars and resample them to the desired interval query = f""" SELECT fromUnixTimestamp(intDiv(window_start/1000000000, 300) * 300) as interval_start, min(open) as open, max(high) as high, min(low) as low, argMax(close, window_start) as close, sum(volume) as volume FROM stock_db.{table} WHERE ticker = '{ticker}' AND window_start/1000000000 BETWEEN toUnixTimestamp('{start_date.date()}') AND toUnixTimestamp('{end_date.date()}') GROUP BY interval_start ORDER BY interval_start ASC """ print("\nExecuting Query:") print(query) # Debugging: Print the query to verify its correctness result = client.query(query) if not result.result_rows: print(f"No data found for {ticker}") return pd.DataFrame() df = pd.DataFrame( result.result_rows, columns=['date', 'open', 'high', 'low', 'close', 'volume'] ) if interval != "daily" and interval != "5min": # Resample to desired interval df.set_index('date', inplace=True) minutes = minutes_map[interval] rule = f'{minutes}T' df = df.resample(rule).agg({ 'open': 'first', 'high': 'max', 'low': 'min', 'close': 'last', 'volume': 'sum' }).dropna() df.reset_index(inplace=True) return df except Exception as e: print(f"Error fetching data for {ticker}: {str(e)}") return pd.DataFrame() def get_valid_tickers(min_price: float, max_price: float, min_volume: int, interval: str) -> list: """Get tickers that meet the price and volume criteria""" client = create_client() # Get the most recent trading day today = datetime.now().date() yesterday = today - timedelta(days=1) # First get valid tickers from daily data daily_query = f""" SELECT DISTINCT ticker FROM stock_db.stock_prices_daily WHERE date = '{yesterday}' AND close BETWEEN {min_price} AND {max_price} AND volume >= {min_volume} ORDER BY ticker ASC """ try: result = client.query(daily_query) tickers = [row[0] for row in result.result_rows] print(f"\nFound {len(tickers)} stocks matching price and volume criteria") if interval != "daily": # Now verify these tickers have intraday data # Convert to Unix timestamp in nanoseconds start_ts = int(datetime.combine(yesterday, datetime.strptime("09:30", "%H:%M").time()).timestamp() * 1000000000) end_ts = int(datetime.combine(yesterday, datetime.strptime("16:00", "%H:%M").time()).timestamp() * 1000000000) intraday_query = f""" SELECT DISTINCT ticker FROM stock_db.stock_prices WHERE ticker IN ({','.join([f"'{t}'" for t in tickers])}) AND window_start BETWEEN {start_ts} AND {end_ts} GROUP BY ticker HAVING count() >= 50 -- Ensure we have enough data points for the indicator """ result = client.query(intraday_query) tickers = [row[0] for row in result.result_rows] print(f"Of those, {len(tickers)} have recent intraday data") return tickers except Exception as e: print(f"Error fetching tickers: {str(e)}") return [] def view_stock_details(ticker: str, interval: str, start_date: datetime, end_date: datetime) -> None: """Display detailed data for a single stock""" print(f"\nšŸ“Š Detailed Analysis for {ticker}") print(f"Interval: {interval}") print(f"Date Range: {start_date.date()} to {end_date.date()}") try: # Construct query client = create_client() today = datetime.now().date() start_date = today - timedelta(days=60) if interval == "daily": table = "stock_prices_daily" date_col = "date" query = f""" SELECT {date_col} as date, open, high, low, close, volume FROM stock_db.{table} WHERE ticker = '{ticker}' AND {date_col} BETWEEN '{start_date}' AND '{today}' ORDER BY date ASC """ else: table = "stock_prices" date_col = "window_start" minutes_map = { "5min": 5, "15min": 15, "30min": 30, "1hour": 60 } minutes = minutes_map[interval] query = f""" SELECT fromUnixTimestamp(intDiv({date_col}, 300) * 300) as interval_start, min(open) as open, max(high) as high, min(low) as low, argMax(close, {date_col}) as close, sum(volume) as volume FROM stock_db.{table} WHERE ticker = '{ticker}' AND {date_col} BETWEEN toUnixTimestamp('{start_date}') AND toUnixTimestamp('{today}') GROUP BY interval_start ORDER BY interval_start ASC """ # Print the actual query being executed print("\nExecuting Query:") print(query) # Execute query and get results result = client.query(query) if not result.result_rows: print("\nNo data found for this stock") return # Convert to DataFrame df = pd.DataFrame( result.result_rows, columns=['date', 'open', 'high', 'low', 'close', 'volume'] ) # Print raw query results print("\nRaw Query Results:") print(f"Number of rows returned: {len(result.result_rows)}") print("\nFirst 5 rows of raw data:") for i, row in enumerate(result.result_rows[:5]): print(f"Row {i + 1}: {row}") print("\nLast 5 rows of raw data:") for i, row in enumerate(result.result_rows[-5:]): print(f"Row {len(result.result_rows) - 4 + i}: {row}") # Calculate SunnyBands sunny = SunnyBands() results = sunny.calculate(df) # Get last values last_price = df.iloc[-1] last_bands = results.iloc[-1] print("\nLatest Values:") print(f"Date: {last_price['date']}") print(f"Open: ${last_price['open']:.2f}") print(f"High: ${last_price['high']:.2f}") print(f"Low: ${last_price['low']:.2f}") print(f"Close: ${last_price['close']:.2f}") print(f"Volume: {last_price['volume']:,}") print(f"\nSunnyBands Indicators:") print(f"DMA: ${last_bands['dma']:.2f}") print(f"Upper Band: ${last_bands['upper_band']:.2f}") print(f"Lower Band: ${last_bands['lower_band']:.2f}") print(f"Bullish Signal: {'Yes' if last_bands['bullish_signal'] else 'No'}") print(f"Bearish Signal: {'Yes' if last_bands['bearish_signal'] else 'No'}") except Exception as e: print(f"Error analyzing {ticker}: {str(e)}") def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None) -> None: print(f"\nScanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}") interval = get_interval_choice() end_date = datetime.now() start_date = end_date - timedelta(days=1) # Get last trading day # First get qualified stocks from database client = create_client() # Convert dates to Unix timestamp in nanoseconds end_ts = int(end_date.timestamp() * 1000000000) start_ts = int(start_date.timestamp() * 1000000000) # Query to get stocks meeting criteria with their latest data query = f""" WITH latest_data AS ( SELECT ticker, argMax(close, window_start) as last_close, sum(volume) as total_volume, max(window_start) as last_update FROM stock_db.stock_prices WHERE window_start BETWEEN {start_ts} AND {end_ts} GROUP BY ticker HAVING last_close BETWEEN {min_price} AND {max_price} AND total_volume >= {min_volume} ) SELECT ticker, last_close, total_volume, last_update FROM latest_data ORDER BY ticker """ try: result = client.query(query) qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows] qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows] if not qualified_stocks: print("No stocks found matching criteria.") return print(f"\nFound {len(qualified_stocks)} stocks matching criteria") # Initialize indicators sunny = SunnyBands() calculator = None if portfolio_size and portfolio_size > 0: calculator = PositionCalculator(account_size=portfolio_size) bullish_signals = [] bearish_signals = [] # Process each qualified stock for ticker, current_price, current_volume, last_update in qualified_stocks: try: # Get historical data based on interval df = get_stock_data(ticker, start_date, end_date, interval) if df.empty or len(df) < 50: # Need at least 50 bars for the indicator continue # Calculate SunnyBands results = sunny.calculate(df) # Check for signals if results['bullish_signal'].iloc[-1]: target_price = results['upper_band'].iloc[-1] if calculator: position = calculator.calculate_position_size(current_price, target_price) if position['shares'] > 0: signal_data = { 'ticker': ticker, 'entry': current_price, 'target': target_price, 'volume': current_volume, 'last_update': datetime.fromtimestamp(last_update/1000000000), 'shares': position['shares'], 'position_size': position['position_value'], 'stop_loss': position['stop_loss'], 'risk': position['potential_loss'], 'reward': position['potential_profit'], 'r_r': position['risk_reward_ratio'] } bullish_signals.append(signal_data) print(f"\n🟢 {ticker} Entry: ${current_price:.2f} Target: ${target_price:.2f}") print(f" Shares: {signal_data['shares']} | Risk: ${abs(signal_data['risk']):.2f} | " f"Reward: ${signal_data['reward']:.2f} | R/R: {signal_data['r_r']:.2f}") elif results['bearish_signal'].iloc[-1]: bearish_signals.append({ 'ticker': ticker, 'price': current_price, 'volume': current_volume, 'last_update': datetime.fromtimestamp(last_update/1000000000) }) print(f"\nšŸ”“ {ticker} at ${current_price:.2f}") except Exception as e: print(f"Error processing {ticker}: {str(e)}") continue # Save results output_dir = 'reports' os.makedirs(output_dir, exist_ok=True) output_date = datetime.now().strftime("%Y%m%d_%H%M") if bullish_signals: df_bullish = pd.DataFrame(bullish_signals) output_file = f'{output_dir}/sunny_bullish_{output_date}.csv' df_bullish.to_csv(output_file, index=False) print(f"\nSaved bullish signals to {output_file}") if bearish_signals: df_bearish = pd.DataFrame(bearish_signals) output_file = f'{output_dir}/sunny_bearish_{output_date}.csv' df_bearish.to_csv(output_file, index=False) print(f"\nSaved bearish signals to {output_file}") print(f"\nFound {len(bullish_signals)} bullish and {len(bearish_signals)} bearish signals") except Exception as e: print(f"Error during scan: {str(e)}")