from screener.user_input import get_interval_choice import os from datetime import datetime, timedelta import pandas as pd from db.db_connection import create_client from trading.position_calculator import PositionCalculator from screener.t_sunnyband import get_stock_data from indicators.three_atr_ema import ThreeATREMAIndicator def run_atr_ema_target_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None): print(f"\nšŸ” Scanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}") interval = get_interval_choice() end_date = datetime.now() start_date = end_date - timedelta(days=1) # Last trading day start_ts = int(start_date.timestamp() * 1e9) # Convert to nanoseconds end_ts = int(end_date.timestamp() * 1e9) client = create_client() try: query = f""" WITH latest_data AS ( SELECT ticker, sum(volume) AS total_volume, argMax(open, window_start) AS last_open, argMax(close, window_start) AS last_close, argMax(high, window_start) AS last_high, argMax(low, window_start) AS last_low, max(window_start) AS last_update, sum(transactions) AS transaction_count FROM stock_db.stock_prices WHERE window_start BETWEEN {start_ts} AND {end_ts} GROUP BY ticker HAVING last_close BETWEEN {min_price} AND {max_price} AND total_volume >= {min_volume} ) SELECT ticker, total_volume, last_open, last_close, last_high, last_low, last_update, transaction_count FROM latest_data ORDER BY ticker """ result = client.query(query) stocks = result.result_rows if not stocks: print("āŒ No stocks found matching criteria.") return print(f"\nāœ… Found {len(stocks)} stocks matching criteria") # **Correct column order as per ClickHouse output** columns = ["ticker", "volume", "open", "close", "high", "low", "window_start", "transactions"] df_stocks = pd.DataFrame(stocks, columns=columns) # **Convert timestamps from nanoseconds to readable datetime** df_stocks["window_start"] = pd.to_datetime(df_stocks["window_start"], unit="ns") # Debugging: Check if columns exist print("\nšŸ“Š Data Sample from ClickHouse Query:") print(df_stocks.head()) indicator = ThreeATREMAIndicator() calculator = PositionCalculator(portfolio_size, risk_percentage=1.0, stop_loss_percentage=7.0) if portfolio_size else None bullish_signals = [] for _, row in df_stocks.iterrows(): ticker = row["ticker"] current_price = row["close"] current_volume = row["volume"] last_update = row["window_start"] try: df = get_stock_data(ticker, start_date, end_date, interval) # **Check if DataFrame has expected columns** if df.empty: print(f"āš ļø No data found for {ticker}. Skipping.") continue missing_cols = [col for col in ["close", "open", "high", "low", "volume"] if col not in df.columns] if missing_cols: print(f"āš ļø {ticker} data is missing columns: {missing_cols}. Skipping.") print(df.head()) # Debugging output continue results = indicator.calculate(df) last_row = results.iloc[-1] prev_row = results.iloc[-2] bullish_entry = ( last_row["close"] < last_row["ema"] and prev_row["close"] <= prev_row["lower_band"] and last_row["close"] > prev_row["close"] ) if bullish_entry: entry_price = last_row["close"] target_1 = entry_price * 1.10 # 10% profit target_2 = entry_price * 1.20 # 20% profit # Trailing stop logic trail_stop = None trail_active = False if last_row["close"] >= last_row["upper_band"]: trail_active = True highest_price = max(results["high"].iloc[-5:]) # Last 5 days trail_stop = highest_price * 0.98 # 2% below high # Position sizing position = calculator.calculate_position_size(entry_price, target_2) if calculator else None position_size = position["position_value"] if position else None # Save signal signal_data = { "ticker": ticker, "entry_price": entry_price, "target_1": target_1, "target_2": target_2, "volume": current_volume, "last_update": last_update, "trail_stop": trail_stop, "position_size": position_size } bullish_signals.append(signal_data) # Print result print(f"\n🟢 {ticker} @ ${entry_price:.2f}") print(f" šŸŽÆ Target 1: ${target_1:.2f} | Target 2: ${target_2:.2f}") if trail_active: print(f" 🚨 Trailing Stop: ${trail_stop:.2f}") except Exception as e: print(f"āŒ Error processing {ticker}: {e}") continue # Save results if bullish_signals: output_dir = "reports" os.makedirs(output_dir, exist_ok=True) output_file = f"{output_dir}/atr_ema_targets_{datetime.now().strftime('%Y%m%d_%H%M')}.csv" pd.DataFrame(bullish_signals).to_csv(output_file, index=False) print(f"\nšŸ“ Saved bullish signals to {output_file}") else: print("āŒ No bullish signals found.") except Exception as e: print(f"āŒ Error during scan: {e}")