import datetime from screener.data_fetcher import validate_date_range, fetch_financial_data, get_stocks_in_time_range from screener.c_canslim import check_quarterly_earnings, check_return_on_equity, check_sales_growth from screener.a_canslim import check_annual_eps_growth from screener.l_canslim import check_industry_leadership # ✅ NEW: Import L Score function from screener.i_canslim import check_institutional_sponsorship # ✅ NEW: Import I Score function from screener.csv_appender import append_scores_to_csv from screener.screeners import SCREENERS # Import categories from screener.user_input import get_user_screener_selection # Import function def main(): # 1️⃣ Ask user for start and end date user_start_date = input("Enter start date (YYYY-MM-DD): ") user_end_date = input("Enter end date (YYYY-MM-DD): ") # 2️⃣ Validate and adjust date range if needed start_date, end_date = validate_date_range(user_start_date, user_end_date, required_quarters=4) # 3️⃣ Get selected screeners & customization preferences selected_screeners = get_user_screener_selection() print(f"\n✅ Selected Screeners: {selected_screeners}\n") # ✅ DEBUG LOG # 4️⃣ Get all stock symbols dynamically symbol_list = get_stocks_in_time_range(start_date, end_date) if not symbol_list: print("No stocks found within the given date range.") return print(f"Processing {len(symbol_list)} stocks within the given date range...\n") # 5️⃣ Process each stock symbol for symbol in symbol_list: data = fetch_financial_data(symbol, start_date, end_date) if not data: print(f"⚠️ Warning: No data returned for {symbol}. Assigning default score.\n") scores = {screener: 0.25 for category in selected_screeners for screener in selected_screeners[category]} else: scores = {} # 6️⃣ Compute scores dynamically based on user selection for category, screeners in selected_screeners.items(): for screener, threshold in screeners.items(): if screener == "EPS_Score": scores[screener] = check_quarterly_earnings(data.get("quarterly_eps", [])) elif screener == "Annual_EPS_Score": scores[screener] = check_annual_eps_growth(data.get("annual_eps", [])) elif screener == "Sales_Score": scores[screener] = check_sales_growth(data.get("sales_growth", [])) elif screener == "ROE_Score": scores[screener] = check_return_on_equity(data.get("roe", [])) elif screener == "L_Score": scores[screener] = check_industry_leadership(symbol) # ✅ NEW: Industry Leadership Calculation print(f"🟢 {symbol} - L_Score: {scores[screener]}") # ✅ DEBUG LOG elif screener == "I_Score": scores[screener] = check_institutional_sponsorship(symbol) # ✅ NEW: Institutional Sponsorship Check print(f"🏢 {symbol} - I_Score: {scores[screener]}") # ✅ DEBUG LOG # Apply user-defined threshold if applicable if isinstance(threshold, (int, float)): scores[screener] = scores[screener] >= threshold # 7️⃣ Calculate Total Score scores["Total_Score"] = sum(scores.values()) # ✅ NEW: Total Score Calculation # 8️⃣ Append results to CSV append_scores_to_csv(symbol, scores) print("✅ Scores saved in data/metrics/stock_scores.csv\n") if __name__ == "__main__": main()