import os import numpy as np from datetime import datetime, timedelta import pandas as pd from db.db_connection import create_client from indicators.sunny_bands import SunnyBands from trading.position_calculator import PositionCalculator from screener.user_input import get_interval_choice, get_date_range from utils.data_utils import get_stock_data, validate_signal_date, print_signal, save_signals_to_csv def check_entry_signal(df: pd.DataFrame) -> list: """ Check for entry signals based on Sunny Bands strategy throughout the date range Args: df (pd.DataFrame): DataFrame with price data Returns: list: List of tuples (signal, date, signal_data) for each signal found """ if len(df) < 2: # Need at least 2 bars for comparison return [] sunny = SunnyBands() results = sunny.calculate(df) if len(results) < 2: return [] signals = [] # Start from index 1 to compare with previous for i in range(1, len(df)): current = df.iloc[i] current_bands = results.iloc[i] # Check for bullish signal if current_bands['bullish_signal']: signal_data = { 'price': current['close'], 'upper_band': current_bands['upper_band'], 'lower_band': current_bands['lower_band'], 'dma': current_bands['dma'] } signals.append((True, current['date'], signal_data)) return signals def get_valid_tickers(min_price: float, max_price: float, min_volume: int, interval: str) -> list: """Get tickers that meet the price and volume criteria""" # Get the most recent trading day today = datetime.now().date() yesterday = today - timedelta(days=1) try: with create_client() as client: # First get valid tickers from daily data daily_query = f""" SELECT DISTINCT ticker FROM stock_db.stock_prices_daily WHERE date = '{yesterday}' AND close BETWEEN {min_price} AND {max_price} AND volume >= {min_volume} ORDER BY ticker ASC """ result = client.query(daily_query) tickers = [row[0] for row in result.result_rows] print(f"\nFound {len(tickers)} stocks matching price and volume criteria") if interval != "daily": # Now verify these tickers have intraday data # Convert to Unix timestamp in nanoseconds start_ts = int(datetime.combine(yesterday, datetime.strptime("09:30", "%H:%M").time()).timestamp() * 1000000000) end_ts = int(datetime.combine(yesterday, datetime.strptime("16:00", "%H:%M").time()).timestamp() * 1000000000) intraday_query = f""" SELECT DISTINCT ticker FROM stock_db.stock_prices WHERE ticker IN ({','.join([f"'{t}'" for t in tickers])}) AND window_start BETWEEN {start_ts} AND {end_ts} GROUP BY ticker HAVING count() >= 50 -- Ensure we have enough data points for the indicator """ result = client.query(intraday_query) tickers = [row[0] for row in result.result_rows] print(f"Of those, {len(tickers)} have recent intraday data") return tickers except Exception as e: print(f"Error fetching tickers: {str(e)}") return [] def view_stock_details(ticker: str, interval: str, start_date: datetime, end_date: datetime) -> None: """Display detailed data for a single stock""" print(f"\nšŸ“Š Detailed Analysis for {ticker}") print(f"Interval: {interval}") print(f"Date Range: {start_date.date()} to {end_date.date()}") try: with create_client() as client: # Construct query today = datetime.now().date() start_date = today - timedelta(days=60) if interval == "daily": table = "stock_prices_daily" date_col = "date" query = f""" SELECT {date_col} as date, open, high, low, close, volume FROM stock_db.{table} WHERE ticker = '{ticker}' AND {date_col} BETWEEN '{start_date}' AND '{today}' ORDER BY date ASC """ else: table = "stock_prices" date_col = "window_start" minutes_map = { "5min": 5, "15min": 15, "30min": 30, "1hour": 60 } minutes = minutes_map[interval] query = f""" SELECT toDateTime(intDiv({date_col}/1000000000, {minutes}*60) * ({minutes}*60)) as interval_start, min(open) as open, max(high) as high, min(low) as low, argMax(close, {date_col}) as close, sum(volume) as volume FROM stock_db.{table} WHERE ticker = '{ticker}' AND {date_col} BETWEEN {int(start_date.timestamp() * 1e9)} AND {int(today.timestamp() * 1e9)} GROUP BY interval_start ORDER BY interval_start ASC """ # Execute query and get results result = client.query(query) if not result.result_rows: print("\nNo data found for this stock") return # Convert to DataFrame df = pd.DataFrame( result.result_rows, columns=['date', 'open', 'high', 'low', 'close', 'volume'] ) # Print raw query results print("\nRaw Query Results:") print(f"Number of rows returned: {len(result.result_rows)}") print("\nFirst 5 rows of raw data:") for i, row in enumerate(result.result_rows[:5]): print(f"Row {i + 1}: {row}") print("\nLast 5 rows of raw data:") for i, row in enumerate(result.result_rows[-5:]): print(f"Row {len(result.result_rows) - 4 + i}: {row}") # Calculate SunnyBands sunny = SunnyBands() results = sunny.calculate(df) # Get last values last_price = df.iloc[-1] last_bands = results.iloc[-1] print("\nLatest Values:") print(f"Date: {last_price['date']}") print(f"Open: ${last_price['open']:.2f}") print(f"High: ${last_price['high']:.2f}") print(f"Low: ${last_price['low']:.2f}") print(f"Close: ${last_price['close']:.2f}") print(f"Volume: {last_price['volume']:,}") print(f"\nSunnyBands Indicators:") print(f"DMA: ${last_bands['dma']:.2f}") print(f"Upper Band: ${last_bands['upper_band']:.2f}") print(f"Lower Band: ${last_bands['lower_band']:.2f}") print(f"Bullish Signal: {'Yes' if last_bands['bullish_signal'] else 'No'}") print(f"Bearish Signal: {'Yes' if last_bands['bearish_signal'] else 'No'}") except Exception as e: print(f"Error analyzing {ticker}: {str(e)}") def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None) -> None: print(f"\nScanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}") interval = get_interval_choice() # Get date range from user input start_date, end_date = get_date_range() # First get qualified stocks from database # Convert dates to Unix timestamp in nanoseconds end_ts = int(end_date.timestamp() * 1000000000) start_ts = int(start_date.timestamp() * 1000000000) try: with create_client() as client: # Query to get stocks meeting criteria with their latest data query = f""" WITH filtered_data AS ( SELECT ticker, window_start, close, volume, toDate(toDateTime(window_start/1000000000)) as trade_date FROM stock_db.stock_prices WHERE window_start BETWEEN {start_ts} AND {end_ts} AND toDateTime(window_start/1000000000) <= now() ), daily_data AS ( SELECT ticker, trade_date, argMax(close, window_start) as daily_close, sum(volume) as daily_volume FROM filtered_data GROUP BY ticker, trade_date HAVING daily_close BETWEEN {min_price} AND {max_price} AND daily_volume >= {min_volume} ), latest_data AS ( SELECT ticker, argMax(daily_close, trade_date) as last_close, sum(daily_volume) as total_volume, max(trade_date) as last_update FROM daily_data GROUP BY ticker ) SELECT ticker, last_close, total_volume, last_update FROM latest_data ORDER BY ticker """ result = client.query(query) qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows] qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows] if not qualified_stocks: print("No stocks found matching criteria.") return print(f"\nFound {len(qualified_stocks)} stocks matching criteria") # Initialize indicators sunny = SunnyBands() calculator = None if portfolio_size and portfolio_size > 0: calculator = PositionCalculator( account_size=portfolio_size, risk_percentage=1.0, stop_loss_percentage=7.0 # Explicit 7% stop loss ) bullish_signals = [] bearish_signals = [] # Process each qualified stock for ticker, current_price, current_volume, last_update in qualified_stocks: try: # Get historical data based on interval df = get_stock_data(ticker, start_date, end_date, interval) if df.empty or len(df) < 50: # Need at least 50 bars for the indicator continue # Check for signals throughout the date range signals = check_entry_signal(df) for signal, signal_date, signal_data in signals: if calculator: try: position = calculator.calculate_position_size( entry_price=signal_data['price'], target_price=signal_data['upper_band'] ) if position['shares'] > 0: entry_data = { 'ticker': ticker, 'entry_price': signal_data['price'], 'target_price': signal_data['upper_band'], 'signal_date': signal_date, 'volume': current_volume, 'last_update': datetime.fromtimestamp(last_update/1000000000), 'shares': position['shares'], 'position_size': position['position_value'], 'stop_loss': signal_data['price'] * 0.93, # 7% stop loss 'risk_amount': position['potential_loss'], 'profit_amount': position['potential_profit'], 'risk_reward_ratio': position['risk_reward_ratio'] } bullish_signals.append(entry_data) print_signal(entry_data, "🟢") except ValueError as e: print(f"Skipping {ticker} position: {str(e)}") continue except Exception as e: print(f"Error processing {ticker}: {str(e)}") continue save_signals_to_csv(bullish_signals, 'sunny') except Exception as e: print(f"Error during scan: {str(e)}")