stock_system/src/utils/data_utils.py

231 lines
8.2 KiB
Python

import os
import os
import pandas as pd
from datetime import datetime, timedelta
from db.db_connection import create_client
def validate_signal_date(signal_date: datetime) -> datetime:
"""
Validate and adjust signal date if needed
Args:
signal_date (datetime): Signal date to validate
Returns:
datetime: Valid signal date (not in future)
"""
current_date = datetime.now()
if signal_date > current_date:
return current_date
return signal_date
def print_signal(signal_data: dict, signal_type: str = "🔍") -> None:
"""
Print standardized signal output
Args:
signal_data (dict): Dictionary containing signal information
signal_type (str): Emoji indicator for signal type (default: 🔍)
"""
try:
print(f"\n{signal_type} {signal_data['ticker']} @ ${signal_data['entry_price']:.2f} on {signal_data['signal_date'].strftime('%Y-%m-%d %H:%M')}")
print(f" Size: {signal_data['shares']} shares (${signal_data['position_size']:.2f})")
print(f" Stop: ${signal_data['stop_loss']:.2f} (7%) | Target: ${signal_data['target_price']:.2f}")
print(f" Risk/Reward: 1:{signal_data['risk_reward_ratio']:.1f} | Risk: ${abs(signal_data['risk_amount']):.2f}")
print(f" Potential Profit: ${signal_data['profit_amount']:.2f}")
except KeyError as e:
print(f"Error printing signal for {signal_data.get('ticker', 'Unknown')}: Missing key {e}")
# Print available keys for debugging
print(f"Available keys: {list(signal_data.keys())}")
def get_qualified_stocks(start_date: datetime, end_date: datetime, min_price: float, max_price: float, min_volume: int) -> list:
"""
Get qualified stocks based on price and volume criteria within date range
Args:
start_date (datetime): Start date for data fetch
end_date (datetime): End date for data fetch
min_price (float): Minimum stock price
max_price (float): Maximum stock price
min_volume (int): Minimum trading volume
Returns:
list: List of tuples (ticker, price, volume, last_update)
"""
try:
start_ts = int(start_date.timestamp() * 1000000000)
end_ts = int(end_date.timestamp() * 1000000000)
with create_client() as client:
query = f"""
WITH filtered_data AS (
SELECT
ticker,
window_start,
close,
volume,
toDateTime(toDateTime(window_start/1000000000)) as trade_date
FROM stock_db.stock_prices
WHERE window_start BETWEEN {start_ts} AND {end_ts}
AND toDateTime(window_start/1000000000) <= now()
),
daily_data AS (
SELECT
ticker,
toDate(trade_date) as date,
argMax(close, window_start) as daily_close,
sum(volume) as daily_volume
FROM filtered_data
GROUP BY ticker, toDate(trade_date)
HAVING daily_close BETWEEN {min_price} AND {max_price}
AND daily_volume >= {min_volume}
),
latest_data AS (
SELECT
ticker,
argMax(daily_close, date) as last_close,
sum(daily_volume) as total_volume,
max(toUnixTimestamp(date)) as last_update
FROM daily_data
GROUP BY ticker
)
SELECT
ticker,
last_close,
total_volume,
last_update
FROM latest_data
ORDER BY ticker
"""
result = client.query(query)
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
return qualified_stocks
except Exception as e:
print(f"Error getting qualified stocks: {str(e)}")
return []
def save_signals_to_csv(signals: list, scanner_name: str) -> None:
"""
Save signals to CSV file with standardized format and naming
Args:
signals (list): List of signal dictionaries
scanner_name (str): Name of the scanner for file naming
"""
if not signals:
print("\nNo signals found")
return
output_dir = 'reports'
os.makedirs(output_dir, exist_ok=True)
output_date = datetime.now().strftime("%Y%m%d_%H%M")
output_file = f'{output_dir}/{scanner_name}_{output_date}.csv'
df_signals = pd.DataFrame(signals)
df_signals.to_csv(output_file, index=False)
print(f"\nSaved {len(signals)} signals to {output_file}")
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
"""
Fetch and resample stock data based on the chosen interval
Args:
ticker (str): Stock ticker symbol
start_date (datetime): Start date for data fetch
end_date (datetime): End date for data fetch
interval (str): Time interval for data ('daily', '5min', '15min', '30min', '1hour')
Returns:
pd.DataFrame: Resampled DataFrame with OHLCV data
"""
try:
with create_client() as client:
# Expand window to get enough data for calculations
start_date = start_date - timedelta(days=90)
# Base query to get raw data at finest granularity
query = f"""
SELECT
toDateTime(window_start/1000000000) as date,
open,
high,
low,
close,
volume
FROM stock_db.stock_prices
WHERE ticker = '{ticker}'
AND window_start BETWEEN
{int(start_date.timestamp() * 1e9)} AND
{int(end_date.timestamp() * 1e9)}
AND toDateTime(window_start/1000000000) <= now()
ORDER BY date ASC
"""
result = client.query(query)
if not result.result_rows:
return pd.DataFrame()
# Create base DataFrame
df = pd.DataFrame(
result.result_rows,
columns=['date', 'open', 'high', 'low', 'close', 'volume']
)
# Convert numeric columns
numeric_columns = ['open', 'high', 'low', 'close', 'volume']
for col in numeric_columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
# Convert date column
df['date'] = pd.to_datetime(df['date'])
# Set date as index for resampling
df.set_index('date', inplace=True)
# Resample based on interval
if interval == 'daily':
rule = '1D'
elif interval == '5min':
rule = '5T'
elif interval == '15min':
rule = '15T'
elif interval == '30min':
rule = '30T'
elif interval == '1hour':
rule = '1H'
else:
rule = '1D' # Default to daily
resampled = df.resample(rule).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
# Reset index to get date as column
resampled.reset_index(inplace=True)
# Filter to requested date range
mask = (resampled['date'] >= start_date + timedelta(days=89)) & (resampled['date'] <= end_date)
resampled = resampled.loc[mask]
# Handle null values
if resampled['close'].isnull().any():
print(f"Warning: Found null values in close prices")
resampled = resampled.dropna(subset=['close'])
if resampled.empty or 'close' not in resampled.columns:
return pd.DataFrame()
return resampled
except Exception as e:
print(f"Error fetching {ticker} data: {str(e)}")
return pd.DataFrame()