436 lines
16 KiB
Python
436 lines
16 KiB
Python
from datetime import datetime, timedelta
|
|
import pandas as pd
|
|
from db.db_connection import create_client
|
|
from indicators.sunny_bands import SunnyBands
|
|
|
|
def get_interval_choice() -> str:
|
|
"""Get user's preferred time interval"""
|
|
print("\nSelect Time Interval:")
|
|
print("1. Daily")
|
|
print("2. 5 minute")
|
|
print("3. 15 minute")
|
|
print("4. 30 minute")
|
|
print("5. 1 hour")
|
|
|
|
while True:
|
|
choice = input("\nEnter your choice (1-5): ")
|
|
if choice == "1":
|
|
return "daily"
|
|
elif choice == "2":
|
|
return "5min"
|
|
elif choice == "3":
|
|
return "15min"
|
|
elif choice == "4":
|
|
return "30min"
|
|
elif choice == "5":
|
|
return "1hour"
|
|
else:
|
|
print("Invalid choice. Please try again.")
|
|
|
|
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
|
|
"""Fetch stock data from the database"""
|
|
client = create_client()
|
|
|
|
# Calculate proper date range (looking back from today)
|
|
end_date = datetime.now()
|
|
start_date = end_date - timedelta(days=60) # 60 days of history
|
|
|
|
if interval == "daily":
|
|
table = "stock_prices_daily"
|
|
date_col = "date"
|
|
query = f"""
|
|
SELECT
|
|
{date_col} as date,
|
|
open,
|
|
high,
|
|
low,
|
|
close,
|
|
volume
|
|
FROM stock_db.{table}
|
|
WHERE ticker = '{ticker}'
|
|
AND {date_col} BETWEEN '{start_date.date()}' AND '{end_date.date()}'
|
|
ORDER BY date ASC
|
|
"""
|
|
else:
|
|
table = "stock_prices"
|
|
date_col = "window_start"
|
|
minutes_map = {
|
|
"5min": 5,
|
|
"15min": 15,
|
|
"30min": 30,
|
|
"1hour": 60
|
|
}
|
|
minutes = minutes_map[interval]
|
|
|
|
# Get 5-minute bars and resample them to the desired interval
|
|
query = f"""
|
|
SELECT
|
|
fromUnixTimestamp(intDiv(window_start/1000000000, 300) * 300) as interval_start,
|
|
min(open) as open,
|
|
max(high) as high,
|
|
min(low) as low,
|
|
argMax(close, window_start) as close,
|
|
sum(volume) as volume
|
|
FROM stock_db.{table}
|
|
WHERE ticker = '{ticker}'
|
|
AND window_start/1000000000 BETWEEN
|
|
toUnixTimestamp('{start_date.date()}') AND
|
|
toUnixTimestamp('{end_date.date()}')
|
|
GROUP BY interval_start
|
|
ORDER BY interval_start ASC
|
|
"""
|
|
|
|
try:
|
|
result = client.query(query)
|
|
if not result.result_rows:
|
|
print(f"No data found for {ticker}")
|
|
return pd.DataFrame()
|
|
|
|
df = pd.DataFrame(
|
|
result.result_rows,
|
|
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
|
)
|
|
|
|
if interval != "daily" and interval != "5min":
|
|
# Resample to desired interval
|
|
df.set_index('date', inplace=True)
|
|
minutes = minutes_map[interval]
|
|
rule = f'{minutes}T'
|
|
|
|
df = df.resample(rule).agg({
|
|
'open': 'first',
|
|
'high': 'max',
|
|
'low': 'min',
|
|
'close': 'last',
|
|
'volume': 'sum'
|
|
}).dropna()
|
|
|
|
df.reset_index(inplace=True)
|
|
|
|
return df
|
|
except Exception as e:
|
|
print(f"Error fetching data for {ticker}: {str(e)}")
|
|
return pd.DataFrame()
|
|
|
|
def get_valid_tickers(min_price: float, max_price: float, min_volume: int, interval: str) -> list:
|
|
"""Get tickers that meet the price and volume criteria"""
|
|
client = create_client()
|
|
|
|
# Get the most recent trading day
|
|
today = datetime.now().date()
|
|
if today.weekday() >= 5: # If it's weekend
|
|
today = today - timedelta(days=today.weekday() - 4) # Go back to Friday
|
|
|
|
# First get valid tickers from daily data
|
|
daily_query = f"""
|
|
SELECT DISTINCT ticker
|
|
FROM stock_db.stock_prices_daily
|
|
WHERE date = '{today}'
|
|
AND close BETWEEN {min_price} AND {max_price}
|
|
AND volume >= {min_volume}
|
|
ORDER BY ticker ASC
|
|
"""
|
|
|
|
try:
|
|
result = client.query(daily_query)
|
|
tickers = [row[0] for row in result.result_rows]
|
|
|
|
if not tickers: # If no data for today, try yesterday
|
|
yesterday = today - timedelta(days=1)
|
|
if yesterday.weekday() >= 5: # If yesterday was weekend
|
|
yesterday = yesterday - timedelta(days=yesterday.weekday() - 4) # Go back to Friday
|
|
|
|
daily_query = f"""
|
|
SELECT DISTINCT ticker
|
|
FROM stock_db.stock_prices_daily
|
|
WHERE date = '{yesterday}'
|
|
AND close BETWEEN {min_price} AND {max_price}
|
|
AND volume >= {min_volume}
|
|
ORDER BY ticker ASC
|
|
"""
|
|
result = client.query(daily_query)
|
|
tickers = [row[0] for row in result.result_rows]
|
|
|
|
print(f"\nFound {len(tickers)} stocks matching price and volume criteria")
|
|
|
|
if interval != "daily":
|
|
# Now verify these tickers have intraday data
|
|
market_open = int(datetime.combine(today, datetime.strptime("09:30", "%H:%M").time()).timestamp() * 1000000000)
|
|
market_close = int(datetime.combine(today, datetime.strptime("16:00", "%H:%M").time()).timestamp() * 1000000000)
|
|
|
|
intraday_query = f"""
|
|
SELECT DISTINCT ticker
|
|
FROM stock_db.stock_prices
|
|
WHERE ticker IN ({','.join([f"'{t}'" for t in tickers])})
|
|
AND window_start BETWEEN {market_open - 86400000000000} AND {market_close} -- Include last 24 hours
|
|
GROUP BY ticker
|
|
HAVING count() >= 10 -- Ensure we have enough data points
|
|
"""
|
|
|
|
result = client.query(intraday_query)
|
|
tickers = [row[0] for row in result.result_rows]
|
|
print(f"Of those, {len(tickers)} have recent intraday data")
|
|
|
|
return tickers
|
|
|
|
except Exception as e:
|
|
print(f"Error fetching tickers: {str(e)}")
|
|
return []
|
|
|
|
def view_stock_details(ticker: str, interval: str, start_date: datetime, end_date: datetime) -> None:
|
|
"""Display detailed data for a single stock"""
|
|
print(f"\n📊 Detailed Analysis for {ticker}")
|
|
print(f"Interval: {interval}")
|
|
print(f"Date Range: {start_date.date()} to {end_date.date()}")
|
|
|
|
try:
|
|
# Construct query
|
|
client = create_client()
|
|
today = datetime.now().date()
|
|
start_date = today - timedelta(days=60)
|
|
|
|
if interval == "daily":
|
|
table = "stock_prices_daily"
|
|
date_col = "date"
|
|
query = f"""
|
|
SELECT
|
|
{date_col} as date,
|
|
open,
|
|
high,
|
|
low,
|
|
close,
|
|
volume
|
|
FROM stock_db.{table}
|
|
WHERE ticker = '{ticker}'
|
|
AND {date_col} BETWEEN '{start_date}' AND '{today}'
|
|
ORDER BY date ASC
|
|
"""
|
|
else:
|
|
table = "stock_prices"
|
|
date_col = "window_start"
|
|
minutes_map = {
|
|
"5min": 5,
|
|
"15min": 15,
|
|
"30min": 30,
|
|
"1hour": 60
|
|
}
|
|
minutes = minutes_map[interval]
|
|
|
|
query = f"""
|
|
SELECT
|
|
fromUnixTimestamp(intDiv({date_col}, 300) * 300) as interval_start,
|
|
min(open) as open,
|
|
max(high) as high,
|
|
min(low) as low,
|
|
argMax(close, {date_col}) as close,
|
|
sum(volume) as volume
|
|
FROM stock_db.{table}
|
|
WHERE ticker = '{ticker}'
|
|
AND {date_col} BETWEEN toUnixTimestamp('{start_date}') AND toUnixTimestamp('{today}')
|
|
GROUP BY interval_start
|
|
ORDER BY interval_start ASC
|
|
"""
|
|
|
|
# Print the actual query being executed
|
|
print("\nExecuting Query:")
|
|
print(query)
|
|
|
|
# Execute query and get results
|
|
result = client.query(query)
|
|
|
|
if not result.result_rows:
|
|
print("\nNo data found for this stock")
|
|
return
|
|
|
|
# Convert to DataFrame
|
|
df = pd.DataFrame(
|
|
result.result_rows,
|
|
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
|
)
|
|
|
|
# Print raw query results
|
|
print("\nRaw Query Results:")
|
|
print(f"Number of rows returned: {len(result.result_rows)}")
|
|
print("\nFirst 5 rows of raw data:")
|
|
for i, row in enumerate(result.result_rows[:5]):
|
|
print(f"Row {i + 1}: {row}")
|
|
|
|
print("\nLast 5 rows of raw data:")
|
|
for i, row in enumerate(result.result_rows[-5:]):
|
|
print(f"Row {len(result.result_rows) - 4 + i}: {row}")
|
|
|
|
# Calculate SunnyBands
|
|
sunny = SunnyBands()
|
|
results = sunny.calculate(df)
|
|
|
|
# Get last values
|
|
last_price = df.iloc[-1]
|
|
last_bands = results.iloc[-1]
|
|
|
|
print("\nLatest Values:")
|
|
print(f"Date: {last_price['date']}")
|
|
print(f"Open: ${last_price['open']:.2f}")
|
|
print(f"High: ${last_price['high']:.2f}")
|
|
print(f"Low: ${last_price['low']:.2f}")
|
|
print(f"Close: ${last_price['close']:.2f}")
|
|
print(f"Volume: {last_price['volume']:,}")
|
|
print(f"\nSunnyBands Indicators:")
|
|
print(f"DMA: ${last_bands['dma']:.2f}")
|
|
print(f"Upper Band: ${last_bands['upper_band']:.2f}")
|
|
print(f"Lower Band: ${last_bands['lower_band']:.2f}")
|
|
print(f"Bullish Signal: {'Yes' if last_bands['bullish_signal'] else 'No'}")
|
|
print(f"Bearish Signal: {'Yes' if last_bands['bearish_signal'] else 'No'}")
|
|
|
|
except Exception as e:
|
|
print(f"Error analyzing {ticker}: {str(e)}")
|
|
|
|
def run_sunny_scanner(min_price: float, max_price: float, min_volume: int) -> None:
|
|
"""Run the SunnyBand scanner and save results"""
|
|
print(f"\nInitializing scan for stocks between ${min_price:.2f} and ${max_price:.2f}")
|
|
print(f"Minimum volume: {min_volume:,}")
|
|
|
|
# Get user's preferred interval
|
|
interval = get_interval_choice()
|
|
|
|
# Set date range to 60 days for proper DMA calculation
|
|
end_date = datetime.now()
|
|
start_date = end_date - timedelta(days=60)
|
|
|
|
print(f"\nAnalyzing data from {start_date.date()} to {end_date.date()}")
|
|
|
|
# Get valid tickers
|
|
print("\nFetching qualified stocks...")
|
|
tickers = get_valid_tickers(min_price, max_price, min_volume, interval)
|
|
|
|
if not tickers:
|
|
print("No stocks found matching your criteria.")
|
|
return
|
|
|
|
print(f"\nFound {len(tickers)} stocks to scan")
|
|
print("Looking for SunnyBand crossovers...")
|
|
print("This may take a few minutes...")
|
|
|
|
# Initialize results lists
|
|
bullish_signals = []
|
|
bearish_signals = []
|
|
errors = []
|
|
|
|
# Initialize SunnyBands indicator
|
|
sunny = SunnyBands()
|
|
|
|
# Track progress
|
|
total = len(tickers)
|
|
processed = 0
|
|
|
|
# Scan each ticker
|
|
for ticker in tickers:
|
|
processed += 1
|
|
if processed % 10 == 0: # Show progress every 10 stocks
|
|
print(f"Progress: {processed}/{total} stocks processed ({(processed/total)*100:.1f}%)")
|
|
|
|
try:
|
|
# Get price data
|
|
df = get_stock_data(ticker, start_date, end_date, interval)
|
|
|
|
if df.empty:
|
|
continue
|
|
|
|
if len(df) < 50: # Need enough data for the indicator
|
|
continue
|
|
|
|
# Calculate SunnyBands
|
|
results = sunny.calculate(df)
|
|
|
|
# Check last day's signals
|
|
last_day = df.iloc[-1]
|
|
|
|
if results['bullish_signal'].iloc[-1]:
|
|
signal_data = {
|
|
'ticker': ticker,
|
|
'price': last_day['close'],
|
|
'volume': last_day['volume'],
|
|
'date': last_day['date'],
|
|
'dma': results['dma'].iloc[-1],
|
|
'lower_band': results['lower_band'].iloc[-1]
|
|
}
|
|
bullish_signals.append(signal_data)
|
|
print(f"🟢 Bullish Signal: {ticker} at ${last_day['close']:.2f}")
|
|
|
|
elif results['bearish_signal'].iloc[-1]:
|
|
signal_data = {
|
|
'ticker': ticker,
|
|
'price': last_day['close'],
|
|
'volume': last_day['volume'],
|
|
'date': last_day['date'],
|
|
'dma': results['dma'].iloc[-1],
|
|
'upper_band': results['upper_band'].iloc[-1]
|
|
}
|
|
bearish_signals.append(signal_data)
|
|
print(f"🔴 Bearish Signal: {ticker} at ${last_day['close']:.2f}")
|
|
|
|
except Exception as e:
|
|
errors.append(f"{ticker}: {str(e)}")
|
|
continue
|
|
|
|
# Save and display results
|
|
output_date = datetime.now().strftime("%Y%m%d")
|
|
|
|
print(f"\nScan Complete! Processed {total} stocks.")
|
|
|
|
if errors:
|
|
print(f"\nEncountered {len(errors)} errors during scan:")
|
|
for error in errors[:5]: # Show first 5 errors
|
|
print(error)
|
|
if len(errors) > 5:
|
|
print(f"...and {len(errors) - 5} more errors")
|
|
|
|
if bullish_signals:
|
|
print(f"\n🟢 Found {len(bullish_signals)} Bullish Signals:")
|
|
df_bullish = pd.DataFrame(bullish_signals)
|
|
bullish_file = f'src/reports/sunny_bullish_{output_date}.csv'
|
|
df_bullish.to_csv(bullish_file, index=False)
|
|
print(f"Saved to {bullish_file}")
|
|
|
|
for signal in bullish_signals:
|
|
print(f"\n{signal['ticker']}:")
|
|
print(f"Price: ${signal['price']:.2f}")
|
|
print(f"Volume: {signal['volume']:,}")
|
|
print(f"DMA: ${signal['dma']:.2f}")
|
|
print(f"Lower Band: ${signal['lower_band']:.2f}")
|
|
|
|
if bearish_signals:
|
|
print(f"\n🔴 Found {len(bearish_signals)} Bearish Signals:")
|
|
df_bearish = pd.DataFrame(bearish_signals)
|
|
bearish_file = f'src/reports/sunny_bearish_{output_date}.csv'
|
|
df_bearish.to_csv(bearish_file, index=False)
|
|
print(f"Saved to {bearish_file}")
|
|
|
|
for signal in bearish_signals:
|
|
print(f"\n{signal['ticker']}:")
|
|
print(f"Price: ${signal['price']:.2f}")
|
|
print(f"Volume: {signal['volume']:,}")
|
|
print(f"DMA: ${signal['dma']:.2f}")
|
|
print(f"Upper Band: ${signal['upper_band']:.2f}")
|
|
|
|
if not bullish_signals and not bearish_signals:
|
|
print("\nNo signals found for today.")
|
|
else:
|
|
while True:
|
|
view_choice = input("\nWould you like to view detailed data for a stock? (Enter ticker or 'n' to exit): ").upper()
|
|
if view_choice == 'N':
|
|
break
|
|
|
|
# Check if ticker is in our signals
|
|
found = False
|
|
for signals in [bullish_signals, bearish_signals]:
|
|
for signal in signals:
|
|
if signal['ticker'] == view_choice:
|
|
found = True
|
|
view_stock_details(view_choice, interval, start_date, end_date)
|
|
break
|
|
if found:
|
|
break
|
|
|
|
if not found:
|
|
print(f"Ticker {view_choice} not found in signals list.")
|