stock_system/src/screener/t_atr_ema.py

151 lines
6.5 KiB
Python

from screener.user_input import get_interval_choice, get_date_range
import os
from datetime import datetime, timedelta
import pandas as pd
from db.db_connection import create_client
from trading.position_calculator import PositionCalculator
from utils.data_utils import get_stock_data, validate_signal_date, print_signal, save_signals_to_csv
from indicators.three_atr_ema import ThreeATREMAIndicator
def check_atr_ema_bullish_signal(df: pd.DataFrame) -> bool:
"""Check for bullish signal based on ATR EMA indicator"""
# Get latest values from DataFrame
last_price = df.iloc[-1]
previous_price = df.iloc[-2] # Get the previous row for comparison
indicator = ThreeATREMAIndicator()
results = indicator.calculate(df)
indicator = ThreeATREMAIndicator()
results = indicator.calculate(df)
last_bands = results.iloc[-1]
print(f"\nSunnyBands Indicators:")
print(f"DMA: ${last_bands['dma']:.2f}")
print(f"Upper Band: ${last_bands['upper_band']:.2f}")
print(f"Lower Band: ${last_bands['lower_band']:.2f}")
print(f"Bullish Signal: {'Yes' if last_bands['signal'] else 'No'}")
def check_atr_ema_buy_condition(df: pd.DataFrame) -> tuple:
"""Check if price is below EMA and moving up through lower ATR band"""
# Get latest values from DataFrame
last_price = df.iloc[-1]
previous_price = df.iloc[-2] # Get the previous row for comparison
results = ThreeATREMAIndicator().calculate(df) # Ensure results are calculated here
# Check if price is below EMA and has started moving up
ema = results['ema'].iloc[-1]
lower_band = results['lower_band'].iloc[-1]
signal = (
last_price['close'] < ema and
previous_price['close'] <= lower_band and
last_price['close'] > previous_price['close']
)
return signal, last_price['date'] if signal else None, results.iloc[-1]
def run_atr_ema_scanner(min_price: float, max_price: float, min_volume: int, portfolio_size: float = None) -> None:
print(f"\nScanning for stocks ${min_price:.2f}-${max_price:.2f} with min volume {min_volume:,}")
# Get time interval
interval = get_interval_choice()
start_date, end_date = get_date_range()
start_ts = int(start_date.timestamp() * 1000000000)
end_ts = int(end_date.timestamp() * 1000000000)
client = create_client()
try:
query = f"""
WITH latest_data AS (
SELECT
ticker,
argMax(close, window_start) as last_close,
sum(volume) as total_volume,
max(window_start) as last_update
FROM stock_db.stock_prices
WHERE window_start BETWEEN {start_ts} AND {end_ts}
AND toDateTime(window_start/1000000000) <= now()
GROUP BY ticker
HAVING last_close BETWEEN {min_price} AND {max_price}
AND total_volume >= {min_volume}
)
SELECT
ticker,
last_close,
total_volume,
last_update
FROM latest_data
ORDER BY ticker
"""
result = client.query(query)
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
if not qualified_stocks:
print("No stocks found matching criteria.")
return
print(f"\nFound {len(qualified_stocks)} stocks matching criteria")
# Initialize indicators
indicator = ThreeATREMAIndicator()
calculator = None
if portfolio_size and portfolio_size > 0:
calculator = PositionCalculator(
account_size=portfolio_size,
risk_percentage=1.0,
stop_loss_percentage=7.0 # Explicitly set 7% stop
)
bullish_signals = []
for ticker, current_price, current_volume, last_update in qualified_stocks:
try:
# Get historical data based on interval
df = get_stock_data(ticker, start_date, end_date, interval)
if df.empty or len(df) < 50: # Need at least 50 bars for the indicator
continue
results = indicator.calculate(df)
# Check for signals
signal, signal_date, indicator_values = check_atr_ema_buy_condition(df)
if signal:
target_price = indicator_values['upper_band']
if calculator:
position = calculator.calculate_position_size(current_price, target_price)
if position['shares'] > 0:
signal_data = {
'ticker': ticker,
'entry_price': current_price,
'target_price': target_price,
'signal_date': signal_date,
'volume': current_volume,
'last_update': datetime.fromtimestamp(last_update/1000000000),
'shares': position['shares'],
'position_size': position['position_value'],
'stop_loss': position['stop_loss'],
'risk_amount': position['potential_loss'],
'profit_amount': position['potential_profit'],
'risk_reward_ratio': position['risk_reward_ratio']
}
bullish_signals.append(signal_data)
dollar_risk = signal_data['risk'] * -1
print(f"\n🟢 {ticker} @ ${current_price:.2f} on {signal_date.strftime('%Y-%m-%d %H:%M')}")
print(f" Size: {signal_data['shares']} shares (${signal_data['position_size']:.2f})")
print(f" Stop: ${signal_data['stop_loss']:.2f} (7%) | Target: ${target_price:.2f}")
print(f" Risk/Reward: 1:{signal_data['r_r']:.1f} | Risk: ${dollar_risk:.2f}")
print(f" Potential Profit: ${signal_data['reward']:.2f}")
except Exception as e:
print(f"Error processing {ticker}: {str(e)}")
continue
save_signals_to_csv(bullish_signals, 'atr_ema')
except Exception as e:
print(f"Error during scan: {str(e)}")