173 lines
6.2 KiB
Python
173 lines
6.2 KiB
Python
import pandas as pd
|
|
from datetime import datetime, timedelta
|
|
from db.db_connection import create_client
|
|
|
|
def validate_signal_date(signal_date: datetime) -> datetime:
|
|
"""
|
|
Validate and adjust signal date if needed
|
|
|
|
Args:
|
|
signal_date (datetime): Signal date to validate
|
|
|
|
Returns:
|
|
datetime: Valid signal date (not in future)
|
|
"""
|
|
current_date = datetime.now()
|
|
if signal_date > current_date:
|
|
return current_date
|
|
return signal_date
|
|
|
|
def print_signal(signal_data: dict, signal_type: str = "🔍") -> None:
|
|
"""
|
|
Print standardized signal output
|
|
|
|
Args:
|
|
signal_data (dict): Dictionary containing signal information
|
|
signal_type (str): Emoji indicator for signal type (default: 🔍)
|
|
"""
|
|
try:
|
|
print(f"\n{signal_type} {signal_data['ticker']} @ ${signal_data['entry_price']:.2f} on {signal_data['signal_date'].strftime('%Y-%m-%d %H:%M')}")
|
|
print(f" Size: {signal_data['shares']} shares (${signal_data['position_size']:.2f})")
|
|
print(f" Stop: ${signal_data['stop_loss']:.2f} (7%) | Target: ${signal_data['target_price']:.2f}")
|
|
print(f" Risk/Reward: 1:{signal_data['risk_reward_ratio']:.1f} | Risk: ${abs(signal_data['risk_amount']):.2f}")
|
|
print(f" Potential Profit: ${signal_data['profit_amount']:.2f}")
|
|
except KeyError as e:
|
|
print(f"Error printing signal: Missing key {e}")
|
|
|
|
def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
|
"""
|
|
Save signals to CSV file with standardized format and naming
|
|
|
|
Args:
|
|
signals (list): List of signal dictionaries
|
|
scanner_name (str): Name of the scanner for file naming
|
|
"""
|
|
if not signals:
|
|
print("\nNo signals found")
|
|
return
|
|
|
|
output_dir = 'reports'
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
output_date = datetime.now().strftime("%Y%m%d_%H%M")
|
|
output_file = f'{output_dir}/{scanner_name}_{output_date}.csv'
|
|
|
|
df_signals = pd.DataFrame(signals)
|
|
df_signals.to_csv(output_file, index=False)
|
|
print(f"\nSaved {len(signals)} signals to {output_file}")
|
|
|
|
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
|
|
"""
|
|
Fetch stock data from the database with enhanced fallback logic
|
|
|
|
Args:
|
|
ticker (str): Stock ticker symbol
|
|
start_date (datetime): Start date for data fetch
|
|
end_date (datetime): End date for data fetch
|
|
interval (str): Time interval for data ('daily', '5min', etc.)
|
|
|
|
Returns:
|
|
pd.DataFrame: DataFrame with OHLCV data
|
|
"""
|
|
try:
|
|
client = create_client()
|
|
|
|
# Expand window to 90 days for more data robustness
|
|
start_date = start_date - timedelta(days=90)
|
|
|
|
# First try primary data source
|
|
if interval == "daily":
|
|
table = "stock_prices_daily"
|
|
else:
|
|
table = "stock_prices"
|
|
|
|
# Unified query format
|
|
query = f"""
|
|
SELECT
|
|
toDateTime(window_start/1000000000) as date,
|
|
open,
|
|
high,
|
|
low,
|
|
close,
|
|
volume
|
|
FROM stock_db.stock_prices
|
|
WHERE ticker = '{ticker}'
|
|
AND window_start BETWEEN
|
|
{int(start_date.timestamp() * 1e9)} AND
|
|
{int(end_date.timestamp() * 1e9)}
|
|
AND toDateTime(window_start/1000000000) <= now()
|
|
ORDER BY date ASC
|
|
"""
|
|
|
|
result = client.query(query)
|
|
|
|
# Fallback to intraday data if needed
|
|
if not result.result_rows and interval == "daily":
|
|
print(f"⚠️ No daily data for {ticker}, resampling from intraday data")
|
|
intraday_query = f"""
|
|
SELECT
|
|
toDateTime(window_start/1000000000) as date,
|
|
first_value(open) AS open,
|
|
max(high) AS high,
|
|
min(low) AS low,
|
|
last_value(close) AS close,
|
|
sum(volume) AS volume
|
|
FROM stock_db.stock_prices
|
|
WHERE ticker = '{ticker}'
|
|
AND window_start BETWEEN
|
|
{int(start_date.timestamp() * 1e9)} AND
|
|
{int(end_date.timestamp() * 1e9)}
|
|
AND toYear(toDateTime(window_start/1000000000)) <= toYear(now())
|
|
AND toYear(toDateTime(window_start/1000000000)) >= (toYear(now()) - 1)
|
|
GROUP BY date
|
|
ORDER BY date ASC
|
|
"""
|
|
result = client.query(intraday_query)
|
|
|
|
# Fallback to different intervals if still empty
|
|
if not result.result_rows:
|
|
print(f"⚠️ No {interval} data for {ticker}, trying weekly")
|
|
weekly_query = f"""
|
|
SELECT
|
|
toStartOfWeek(window_start) AS date,
|
|
first_value(open) AS open,
|
|
max(high) AS high,
|
|
min(low) AS low,
|
|
last_value(close) AS close,
|
|
sum(volume) AS volume
|
|
FROM stock_db.stock_prices
|
|
WHERE ticker = '{ticker}'
|
|
GROUP BY date
|
|
ORDER BY date ASC
|
|
"""
|
|
result = client.query(weekly_query)
|
|
|
|
if not result.result_rows:
|
|
return pd.DataFrame()
|
|
|
|
df = pd.DataFrame(
|
|
result.result_rows,
|
|
columns=['date', 'open', 'high', 'low', 'close', 'volume']
|
|
)
|
|
|
|
# Convert numeric columns
|
|
numeric_columns = ['open', 'high', 'low', 'close', 'volume']
|
|
for col in numeric_columns:
|
|
df[col] = pd.to_numeric(df[col], errors='coerce')
|
|
|
|
# Handle null values
|
|
if df['close'].isnull().any():
|
|
print(f"Warning: Found null values in close prices")
|
|
df = df.dropna(subset=['close'])
|
|
|
|
if df.empty or 'close' not in df.columns:
|
|
return pd.DataFrame()
|
|
|
|
if df['date'].dtype == object:
|
|
df['date'] = pd.to_datetime(df['date'])
|
|
|
|
return df
|
|
|
|
except Exception as e:
|
|
print(f"Error fetching {ticker} data: {str(e)}")
|
|
return pd.DataFrame()
|