refactor: Move common stock query logic to get_qualified_stocks function
This commit is contained in:
parent
69c5b12fd3
commit
1e6a05c81d
@ -71,50 +71,7 @@ def run_atr_ema_scanner(min_price: float, max_price: float, min_volume: int, por
|
||||
end_ts = int(end_date.timestamp() * 1000000000)
|
||||
|
||||
try:
|
||||
with create_client() as client:
|
||||
query = f"""
|
||||
WITH filtered_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
window_start,
|
||||
close,
|
||||
volume,
|
||||
toDateTime(toDateTime(window_start/1000000000)) as trade_date
|
||||
FROM stock_db.stock_prices
|
||||
WHERE window_start BETWEEN {start_ts} AND {end_ts}
|
||||
AND toDateTime(window_start/1000000000) <= now()
|
||||
),
|
||||
daily_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
toDate(trade_date) as date,
|
||||
argMax(close, window_start) as daily_close,
|
||||
sum(volume) as daily_volume
|
||||
FROM filtered_data
|
||||
GROUP BY ticker, toDate(trade_date)
|
||||
HAVING daily_close BETWEEN {min_price} AND {max_price}
|
||||
AND daily_volume >= {min_volume}
|
||||
),
|
||||
latest_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
argMax(daily_close, date) as last_close,
|
||||
sum(daily_volume) as total_volume,
|
||||
max(toUnixTimestamp(date)) as last_update
|
||||
FROM daily_data
|
||||
GROUP BY ticker
|
||||
)
|
||||
SELECT
|
||||
ticker,
|
||||
last_close,
|
||||
total_volume,
|
||||
last_update
|
||||
FROM latest_data
|
||||
ORDER BY ticker
|
||||
"""
|
||||
|
||||
result = client.query(query)
|
||||
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
|
||||
qualified_stocks = get_qualified_stocks(start_date, end_date, min_price, max_price, min_volume)
|
||||
|
||||
if not qualified_stocks:
|
||||
print("No stocks found matching criteria.")
|
||||
|
||||
@ -79,51 +79,7 @@ def run_atr_ema_scanner_v2(min_price: float, max_price: float, min_volume: int,
|
||||
end_ts = int(end_date.timestamp() * 1000000000)
|
||||
|
||||
try:
|
||||
with create_client() as client:
|
||||
# Query to get qualified stocks
|
||||
query = f"""
|
||||
WITH filtered_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
window_start,
|
||||
close,
|
||||
volume,
|
||||
toDateTime(toDateTime(window_start/1000000000)) as trade_date
|
||||
FROM stock_db.stock_prices
|
||||
WHERE window_start BETWEEN {start_ts} AND {end_ts}
|
||||
AND toDateTime(window_start/1000000000) <= now()
|
||||
),
|
||||
daily_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
toDate(trade_date) as date,
|
||||
argMax(close, window_start) as daily_close,
|
||||
sum(volume) as daily_volume
|
||||
FROM filtered_data
|
||||
GROUP BY ticker, toDate(trade_date)
|
||||
HAVING daily_close BETWEEN {min_price} AND {max_price}
|
||||
AND daily_volume >= {min_volume}
|
||||
),
|
||||
latest_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
argMax(daily_close, date) as last_close,
|
||||
sum(daily_volume) as total_volume,
|
||||
max(toUnixTimestamp(date)) as last_update
|
||||
FROM daily_data
|
||||
GROUP BY ticker
|
||||
)
|
||||
SELECT
|
||||
ticker,
|
||||
last_close,
|
||||
total_volume,
|
||||
last_update
|
||||
FROM latest_data
|
||||
ORDER BY ticker
|
||||
"""
|
||||
|
||||
result = client.query(query)
|
||||
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
|
||||
qualified_stocks = get_qualified_stocks(start_date, end_date, min_price, max_price, min_volume)
|
||||
|
||||
if not qualified_stocks:
|
||||
print("No stocks found matching criteria.")
|
||||
|
||||
@ -213,58 +213,12 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
|
||||
start_ts = int(start_date.timestamp() * 1000000000)
|
||||
|
||||
try:
|
||||
with create_client() as client:
|
||||
# Query to get stocks meeting criteria with their latest data
|
||||
query = f"""
|
||||
WITH filtered_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
window_start,
|
||||
close,
|
||||
volume,
|
||||
toDateTime(toDateTime(window_start/1000000000)) as trade_date
|
||||
FROM stock_db.stock_prices
|
||||
WHERE window_start BETWEEN {start_ts} AND {end_ts}
|
||||
AND toDateTime(window_start/1000000000) <= now()
|
||||
),
|
||||
daily_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
toDate(trade_date) as trade_date,
|
||||
argMax(close, window_start) as daily_close,
|
||||
sum(volume) as daily_volume
|
||||
FROM filtered_data
|
||||
GROUP BY ticker, toDate(trade_date)
|
||||
HAVING daily_close BETWEEN {min_price} AND {max_price}
|
||||
AND daily_volume >= {min_volume}
|
||||
),
|
||||
latest_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
argMax(daily_close, trade_date) as last_close,
|
||||
sum(daily_volume) as total_volume,
|
||||
max(toUnixTimestamp(trade_date)) as last_update
|
||||
FROM daily_data
|
||||
GROUP BY ticker
|
||||
)
|
||||
SELECT
|
||||
ticker,
|
||||
last_close,
|
||||
total_volume,
|
||||
last_update
|
||||
FROM latest_data
|
||||
ORDER BY ticker
|
||||
"""
|
||||
|
||||
result = client.query(query)
|
||||
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
|
||||
|
||||
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
|
||||
qualified_stocks = get_qualified_stocks(start_date, end_date, min_price, max_price, min_volume)
|
||||
|
||||
if not qualified_stocks:
|
||||
print("No stocks found matching criteria.")
|
||||
return
|
||||
|
||||
|
||||
print(f"\nFound {len(qualified_stocks)} stocks matching criteria")
|
||||
|
||||
# Initialize indicators
|
||||
|
||||
@ -38,6 +38,75 @@ def print_signal(signal_data: dict, signal_type: str = "🔍") -> None:
|
||||
# Print available keys for debugging
|
||||
print(f"Available keys: {list(signal_data.keys())}")
|
||||
|
||||
def get_qualified_stocks(start_date: datetime, end_date: datetime, min_price: float, max_price: float, min_volume: int) -> list:
|
||||
"""
|
||||
Get qualified stocks based on price and volume criteria within date range
|
||||
|
||||
Args:
|
||||
start_date (datetime): Start date for data fetch
|
||||
end_date (datetime): End date for data fetch
|
||||
min_price (float): Minimum stock price
|
||||
max_price (float): Maximum stock price
|
||||
min_volume (int): Minimum trading volume
|
||||
|
||||
Returns:
|
||||
list: List of tuples (ticker, price, volume, last_update)
|
||||
"""
|
||||
try:
|
||||
start_ts = int(start_date.timestamp() * 1000000000)
|
||||
end_ts = int(end_date.timestamp() * 1000000000)
|
||||
|
||||
with create_client() as client:
|
||||
query = f"""
|
||||
WITH filtered_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
window_start,
|
||||
close,
|
||||
volume,
|
||||
toDateTime(toDateTime(window_start/1000000000)) as trade_date
|
||||
FROM stock_db.stock_prices
|
||||
WHERE window_start BETWEEN {start_ts} AND {end_ts}
|
||||
AND toDateTime(window_start/1000000000) <= now()
|
||||
),
|
||||
daily_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
toDate(trade_date) as date,
|
||||
argMax(close, window_start) as daily_close,
|
||||
sum(volume) as daily_volume
|
||||
FROM filtered_data
|
||||
GROUP BY ticker, toDate(trade_date)
|
||||
HAVING daily_close BETWEEN {min_price} AND {max_price}
|
||||
AND daily_volume >= {min_volume}
|
||||
),
|
||||
latest_data AS (
|
||||
SELECT
|
||||
ticker,
|
||||
argMax(daily_close, date) as last_close,
|
||||
sum(daily_volume) as total_volume,
|
||||
max(toUnixTimestamp(date)) as last_update
|
||||
FROM daily_data
|
||||
GROUP BY ticker
|
||||
)
|
||||
SELECT
|
||||
ticker,
|
||||
last_close,
|
||||
total_volume,
|
||||
last_update
|
||||
FROM latest_data
|
||||
ORDER BY ticker
|
||||
"""
|
||||
|
||||
result = client.query(query)
|
||||
qualified_stocks = [(row[0], row[1], row[2], row[3]) for row in result.result_rows]
|
||||
|
||||
return qualified_stocks
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error getting qualified stocks: {str(e)}")
|
||||
return []
|
||||
|
||||
def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
||||
"""
|
||||
Save signals to CSV file with standardized format and naming
|
||||
|
||||
Loading…
Reference in New Issue
Block a user