refactor: Split large functions in data_utils.py into smaller modules
This commit is contained in:
parent
3e98ba4e9d
commit
8775d35326
@ -77,80 +77,6 @@ def print_signal(signal_data: dict, signal_type: str = "🔍") -> None:
|
|||||||
# Print available keys for debugging
|
# Print available keys for debugging
|
||||||
print(f"Available keys: {list(signal_data.keys())}")
|
print(f"Available keys: {list(signal_data.keys())}")
|
||||||
|
|
||||||
def get_qualified_stocks(start_date: datetime, end_date: datetime, min_price: float, max_price: float, min_volume: int) -> list:
|
|
||||||
"""
|
|
||||||
Get qualified stocks based on price and volume criteria within date range
|
|
||||||
|
|
||||||
Args:
|
|
||||||
start_date (datetime): Start date for data fetch
|
|
||||||
end_date (datetime): End date for data fetch
|
|
||||||
min_price (float): Minimum stock price
|
|
||||||
max_price (float): Maximum stock price
|
|
||||||
min_volume (int): Minimum trading volume
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
list: List of tuples (ticker, price, volume, last_update, type)
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
start_ts = int(start_date.timestamp() * 1000000000)
|
|
||||||
end_ts = int(end_date.timestamp() * 1000000000)
|
|
||||||
|
|
||||||
with create_client() as client:
|
|
||||||
query = f"""
|
|
||||||
WITH filtered_data AS (
|
|
||||||
SELECT
|
|
||||||
sp.ticker,
|
|
||||||
sp.window_start,
|
|
||||||
sp.close,
|
|
||||||
sp.volume,
|
|
||||||
t.type as stock_type,
|
|
||||||
toDateTime(toDateTime(sp.window_start/1000000000)) as trade_date
|
|
||||||
FROM stock_db.stock_prices sp
|
|
||||||
JOIN stock_db.stock_tickers t ON sp.ticker = t.ticker
|
|
||||||
WHERE window_start BETWEEN {start_ts} AND {end_ts}
|
|
||||||
AND toDateTime(window_start/1000000000) <= now()
|
|
||||||
AND close BETWEEN {min_price} AND {max_price}
|
|
||||||
AND volume >= {min_volume}
|
|
||||||
),
|
|
||||||
daily_data AS (
|
|
||||||
SELECT
|
|
||||||
ticker,
|
|
||||||
stock_type,
|
|
||||||
toDate(trade_date) as date,
|
|
||||||
argMax(close, window_start) as daily_close,
|
|
||||||
sum(volume) as daily_volume
|
|
||||||
FROM filtered_data
|
|
||||||
GROUP BY ticker, stock_type, toDate(trade_date)
|
|
||||||
),
|
|
||||||
latest_data AS (
|
|
||||||
SELECT
|
|
||||||
ticker,
|
|
||||||
any(stock_type) as stock_type,
|
|
||||||
argMax(daily_close, date) as last_close,
|
|
||||||
sum(daily_volume) as total_volume,
|
|
||||||
max(toUnixTimestamp(date)) as last_update
|
|
||||||
FROM daily_data
|
|
||||||
GROUP BY ticker
|
|
||||||
HAVING last_close BETWEEN {min_price} AND {max_price}
|
|
||||||
)
|
|
||||||
SELECT
|
|
||||||
ticker,
|
|
||||||
last_close,
|
|
||||||
total_volume,
|
|
||||||
last_update,
|
|
||||||
stock_type
|
|
||||||
FROM latest_data
|
|
||||||
ORDER BY ticker
|
|
||||||
"""
|
|
||||||
|
|
||||||
result = client.query(query)
|
|
||||||
qualified_stocks = [(row[0], row[1], row[2], row[3], row[4]) for row in result.result_rows]
|
|
||||||
|
|
||||||
return qualified_stocks
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error getting qualified stocks: {str(e)}")
|
|
||||||
return []
|
|
||||||
|
|
||||||
def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
def save_signals_to_csv(signals: list, scanner_name: str) -> None:
|
||||||
"""
|
"""
|
||||||
@ -214,41 +140,6 @@ def process_signal_data(ticker: str, signal_data: dict, current_volume: int,
|
|||||||
|
|
||||||
return entry_data
|
return entry_data
|
||||||
|
|
||||||
def get_stock_data(ticker: str, start_date: datetime, end_date: datetime, interval: str) -> pd.DataFrame:
|
|
||||||
"""
|
|
||||||
Fetch and resample stock data based on the chosen interval
|
|
||||||
|
|
||||||
Args:
|
|
||||||
ticker (str): Stock ticker symbol
|
|
||||||
start_date (datetime): Start date for data fetch
|
|
||||||
end_date (datetime): End date for data fetch
|
|
||||||
interval (str): Time interval for data ('daily', '5min', '15min', '30min', '1hour')
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
pd.DataFrame: Resampled DataFrame with OHLCV data
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
with create_client() as client:
|
|
||||||
# Expand window to get enough data for calculations
|
|
||||||
start_date = start_date - timedelta(days=90)
|
|
||||||
|
|
||||||
# Base query to get raw data at finest granularity
|
|
||||||
query = f"""
|
|
||||||
SELECT
|
|
||||||
toDateTime(window_start/1000000000) as date,
|
|
||||||
open,
|
|
||||||
high,
|
|
||||||
low,
|
|
||||||
close,
|
|
||||||
volume
|
|
||||||
FROM stock_db.stock_prices
|
|
||||||
WHERE ticker = '{ticker}'
|
|
||||||
AND window_start BETWEEN
|
|
||||||
{int(start_date.timestamp() * 1e9)} AND
|
|
||||||
{int(end_date.timestamp() * 1e9)}
|
|
||||||
AND toDateTime(window_start/1000000000) <= now()
|
|
||||||
ORDER BY date ASC
|
|
||||||
"""
|
|
||||||
|
|
||||||
result = client.query(query)
|
result = client.query(query)
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user