refactor: Update Sunny Bands scanner to match ATR EMA pattern and focus on bullish signals
This commit is contained in:
parent
15304106ac
commit
c610bc7d4a
@ -10,6 +10,44 @@ from utils.data_utils import get_stock_data, validate_signal_date, print_signal,
|
||||
|
||||
|
||||
|
||||
def check_entry_signal(df: pd.DataFrame) -> list:
|
||||
"""
|
||||
Check for entry signals based on Sunny Bands strategy throughout the date range
|
||||
|
||||
Args:
|
||||
df (pd.DataFrame): DataFrame with price data
|
||||
|
||||
Returns:
|
||||
list: List of tuples (signal, date, signal_data) for each signal found
|
||||
"""
|
||||
if len(df) < 2: # Need at least 2 bars for comparison
|
||||
return []
|
||||
|
||||
sunny = SunnyBands()
|
||||
results = sunny.calculate(df)
|
||||
|
||||
if len(results) < 2:
|
||||
return []
|
||||
|
||||
signals = []
|
||||
|
||||
# Start from index 1 to compare with previous
|
||||
for i in range(1, len(df)):
|
||||
current = df.iloc[i]
|
||||
current_bands = results.iloc[i]
|
||||
|
||||
# Check for bullish signal
|
||||
if current_bands['bullish_signal']:
|
||||
signal_data = {
|
||||
'price': current['close'],
|
||||
'upper_band': current_bands['upper_band'],
|
||||
'lower_band': current_bands['lower_band'],
|
||||
'dma': current_bands['dma']
|
||||
}
|
||||
signals.append((True, current['date'], signal_data))
|
||||
|
||||
return signals
|
||||
|
||||
def get_valid_tickers(min_price: float, max_price: float, min_volume: int, interval: str) -> list:
|
||||
"""Get tickers that meet the price and volume criteria"""
|
||||
client = create_client()
|
||||
@ -235,57 +273,36 @@ def run_sunny_scanner(min_price: float, max_price: float, min_volume: int, portf
|
||||
if df.empty or len(df) < 50: # Need at least 50 bars for the indicator
|
||||
continue
|
||||
|
||||
# Calculate SunnyBands
|
||||
results = sunny.calculate(df)
|
||||
|
||||
# Check for signals
|
||||
if results['bullish_signal'].iloc[-1]:
|
||||
target_price = results['upper_band'].iloc[-1]
|
||||
|
||||
# Check for signals throughout the date range
|
||||
signals = check_entry_signal(df)
|
||||
for signal, signal_date, signal_data in signals:
|
||||
if calculator:
|
||||
try:
|
||||
position = calculator.calculate_position_size(
|
||||
entry_price=current_price,
|
||||
target_price=target_price
|
||||
entry_price=signal_data['price'],
|
||||
target_price=signal_data['upper_band']
|
||||
)
|
||||
if position['shares'] > 0:
|
||||
# Update signal data with proper stop loss calculation
|
||||
# Get signal date from latest data point
|
||||
signal_date = df.iloc[-1]['date']
|
||||
signal_data = {
|
||||
entry_data = {
|
||||
'ticker': ticker,
|
||||
'entry_price': current_price,
|
||||
'target_price': target_price,
|
||||
'entry_price': signal_data['price'],
|
||||
'target_price': signal_data['upper_band'],
|
||||
'signal_date': signal_date,
|
||||
'volume': current_volume,
|
||||
'last_update': datetime.fromtimestamp(last_update/1000000000),
|
||||
'shares': position['shares'],
|
||||
'position_size': position['position_value'],
|
||||
'stop_loss': current_price * 0.93, # 7% stop loss
|
||||
'stop_loss': signal_data['price'] * 0.93, # 7% stop loss
|
||||
'risk_amount': position['potential_loss'],
|
||||
'profit_amount': position['potential_profit'],
|
||||
'risk_reward_ratio': position['risk_reward_ratio']
|
||||
}
|
||||
bullish_signals.append(signal_data)
|
||||
# Update print output format
|
||||
dollar_risk = position['potential_loss'] * -1
|
||||
signal_date = validate_signal_date(df.iloc[-1]['date']) # Get and validate the date
|
||||
signal_data['signal_date'] = signal_date # Add to signal data
|
||||
print_signal(signal_data, "🟢")
|
||||
bullish_signals.append(entry_data)
|
||||
print_signal(entry_data, "🟢")
|
||||
|
||||
except ValueError as e:
|
||||
print(f"Skipping {ticker} position: {str(e)}")
|
||||
continue
|
||||
|
||||
elif results['bearish_signal'].iloc[-1]:
|
||||
signal_date = df.iloc[-1]['date']
|
||||
bearish_signals.append({
|
||||
'ticker': ticker,
|
||||
'price': current_price,
|
||||
'volume': current_volume,
|
||||
'signal_date': signal_date,
|
||||
'last_update': datetime.fromtimestamp(last_update/1000000000)
|
||||
})
|
||||
print(f"\n🔴 {ticker} @ ${current_price:.2f} on {signal_date.strftime('%Y-%m-%d %H:%M')}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {ticker}: {str(e)}")
|
||||
|
||||
Loading…
Reference in New Issue
Block a user